File size: 11,468 Bytes
2004481
 
 
e7a5765
 
2004481
 
e7a5765
2004481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7a5765
 
2004481
e7a5765
2004481
9bc7341
2004481
e7a5765
 
2004481
 
 
e7a5765
 
 
 
2004481
 
 
 
e7a5765
 
2004481
 
 
 
e7a5765
2004481
 
 
 
 
 
 
 
 
 
 
e7a5765
2004481
 
 
 
 
 
 
 
 
 
e7a5765
2004481
e7a5765
 
 
 
9bc7341
e7a5765
2004481
e7a5765
2004481
 
e7a5765
 
 
 
 
 
 
 
2004481
e7a5765
 
 
 
 
 
 
 
 
 
 
 
2004481
 
e7a5765
 
2004481
 
e7a5765
 
2004481
e7a5765
 
2004481
e7a5765
 
2004481
e7a5765
 
 
 
 
2004481
e7a5765
 
 
 
 
2004481
e7a5765
 
 
 
2004481
e7a5765
 
 
 
 
 
 
 
 
 
2004481
e7a5765
 
 
2004481
e7a5765
 
 
2004481
e7a5765
 
 
 
 
 
 
 
 
2004481
e7a5765
 
 
2004481
e7a5765
2004481
e7a5765
 
 
 
 
2004481
e7a5765
2004481
 
 
 
 
 
 
 
 
 
 
e7a5765
 
 
2004481
e7a5765
2004481
e7a5765
2004481
 
e7a5765
 
 
2004481
e7a5765
 
 
2004481
e7a5765
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2004481
e7a5765
2004481
e7a5765
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bc7341
e7a5765
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import os
import pickle
import logging
import time
from typing import List, Optional, Dict, Any, Iterable, Tuple
import requests
import faiss
import json
from llama_index.core import VectorStoreIndex
from llama_index.core.schema import TextNode
from llama_index.vector_stores.faiss import FaissVectorStore
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from sentence_transformers.util import cos_sim

# === Logger configuration ===
logger = logging.getLogger("RAGEngine")
logger.setLevel(logging.INFO)
handler = logging.StreamHandler()
formatter = logging.Formatter("[%(asctime)s] %(levelname)s - %(message)s")
handler.setFormatter(formatter)
if not logger.handlers:
    logger.addHandler(handler)

MAX_TOKENS = 64
DEFAULT_STOPS = ["### Réponse:", "\n\n", "###"]

# ---------- Client Ollama (use /api/generate, no options) ----------
class OllamaClient:
    def __init__(self, model: str, host: Optional[str] = None, timeout: int = 300):
        self.model = model
        self.host = host or os.getenv("OLLAMA_HOST", "http://localhost:11435") #mode proxy
        #self.host = host or os.getenv("OLLAMA_HOST", "http://localhost:11434")
        self.timeout = timeout
        self._gen_url = self.host.rstrip("/") + "/api/generate"

    def generate(self, prompt: str, stop: Optional[List[str]] = None,
                 max_tokens: Optional[int] = None, stream: bool = False,
                 options: Optional[Dict[str, Any]] = None, raw: bool = False) -> str | Iterable[str]:
        payload: Dict[str, Any] = {
            "model": self.model,
            "prompt": prompt,
            "stream": stream,
        }
        if raw:
            payload["raw"] = True
        if stop:
            payload["stop"] = stop
        if max_tokens is not None:
            payload["num_predict"] = int(max_tokens)
        # ❌ aucune "options" pour laisser Ollama auto-tuner

        if stream:
            with requests.post(self._gen_url, json=payload, stream=True, timeout=self.timeout) as r:
                r.raise_for_status()
                for line in r.iter_lines(decode_unicode=True):
                    if not line:
                        continue
                    try:
                        data = json.loads(line)
                    except Exception:
                        continue
                    if "response" in data and not data.get("done"):
                        yield data["response"]
                    if data.get("done"):
                        break
            return

        r = requests.post(self._gen_url, json=payload, timeout=self.timeout)
        r.raise_for_status()
        data = r.json()
        return data.get("response", "")

# ---------- RAG Engine (lazy load + heuristique GK) ----------
class RAGEngine:
    def __init__(self, model_name: str, vector_path: str, index_path: str,
                 model_threads: int = 4, ollama_host: Optional[str] = None,
                 ollama_opts: Optional[Dict[str, Any]] = None):

        logger.info(f"🔎 rag_model_ollama source: {__file__}")
        logger.info("📦 Initialisation du moteur (lazy RAG)...")

        # LLM prêt immédiatement
        self.llm = OllamaClient(model=model_name, host=ollama_host)

        # chemins pour chargement différé
        self.vector_path = vector_path
        self.index_path = index_path

        # objets RAG paresseux
        self.embed_model: Optional[HuggingFaceEmbedding] = None
        self.index: Optional[VectorStoreIndex] = None
        self._loaded = False

        logger.info("✅ Moteur initialisé (sans charger FAISS ni chunks).")

    # ---------- lazy loader ----------
    def _ensure_loaded(self):
        if self._loaded:
            return
        t0 = time.perf_counter()
        logger.info("⏳ Chargement lazy des données RAG (FAISS + chunks + embeddings)...")

        # 1) chunks
        with open(self.vector_path, "rb") as f:
            chunk_texts: List[str] = pickle.load(f)
        nodes = [TextNode(text=chunk) for chunk in chunk_texts]

        # 2) index FAISS
        faiss_index = faiss.read_index(self.index_path)
        vector_store = FaissVectorStore(faiss_index=faiss_index)

        # 3) modèle d'embedding
        self.embed_model = HuggingFaceEmbedding(model_name="intfloat/multilingual-e5-base")

        # 4) index LlamaIndex
        self.index = VectorStoreIndex(nodes=nodes, embed_model=self.embed_model, vector_store=vector_store)

        self._loaded = True
        logger.info(f"✅ RAG chargé en {time.perf_counter() - t0:.2f}s (lazy).")

    # ---------- génération ----------
    def _complete_stream(self, prompt: str, stop: Optional[List[str]] = None,
                         max_tokens: int = MAX_TOKENS, raw: bool = False):
        return self.llm.generate(prompt=prompt, stop=stop, max_tokens=max_tokens,
                                 stream=True, raw=raw)

    def _complete(self, prompt: str, stop: Optional[List[str]] = None,
                  max_tokens: int = 128, raw: bool = False) -> str:
        text = self.llm.generate(prompt=prompt, stop=stop, max_tokens=max_tokens,
                                 stream=False, raw=raw)
        return (text or "").strip()

    # ---------- heuristiques ----------
    def _is_greeting(self, text: str) -> bool:
        s = text.lower().strip()
        return s in {"bonjour", "salut", "hello", "bonsoir", "hi", "coucou", "yo"} or len(s.split()) <= 2

    def _looks_general_knowledge(self, q: str) -> bool:
        q = q.lower().strip()
        gk_keywords = (
            "capitale", "date de naissance", "qui est", "qu'est-ce", "definition",
            "définition", "histoire", "pays", "ville", "math", "science", "sport"
        )
        if len(q.split()) <= 9:
            if any(k in q for k in gk_keywords) or q.startswith(("quelle est", "qui est", "qu'est-ce", "c'est quoi")):
                return True
        return False

    def _should_use_rag_fast(self, question: str) -> bool:
        """N'active RAG que si on détecte des indices 'docs' / longueur significative."""
        q = question.lower()

        # 1) GK → pas de RAG
        if self._looks_general_knowledge(q):
            return False

        # 2) indices RAG
        doc_keywords = (
            "document", "docs", "procédure", "politique", "policy",
            "manuel", "guide", "pdf", "docling", "selon", "dans le contexte",
            "page", "section", "chapitre", "référence", "références", "conformément",
            "note technique", "spécification", "spec", "architecture", "adr"
        )
        if any(k in q for k in doc_keywords):
            return True

        # 3) question longue → probable RAG
        if len(q.split()) >= 14:
            return True

        return False

    def _decide_mode(self, scores: List[float], tau: float = 0.32, is_greeting: bool = False) -> str:
        if is_greeting:
            return "llm"
        top = scores[0] if scores else 0.0
        return "rag" if top >= tau else "llm"

    # ---------- retrieval ----------
    def get_adaptive_top_k(self, question: str) -> int:
        q = question.lower()
        if len(q.split()) <= 7:
            top_k = 8
        elif any(w in q for w in ["liste", "résume", "quels sont", "explique", "comment"]):
            top_k = 10
        else:
            top_k = 8
        logger.info(f"🔢 top_k déterminé automatiquement : {top_k}")
        return top_k

    def rerank_nodes(self, question: str, retrieved_nodes, top_k: int = 3) -> Tuple[List[float], List[TextNode]]:
        assert self.embed_model is not None
        logger.info(f"🔍 Re-ranking des {len(retrieved_nodes)} chunks pour : « {question} »")
        q_emb = self.embed_model.get_query_embedding(question)
        scored_nodes: List[Tuple[float, TextNode]] = []
        for node in retrieved_nodes:
            chunk_emb = self.embed_model.get_text_embedding(node.get_content())
            score = cos_sim(q_emb, chunk_emb).item()
            scored_nodes.append((score, node))
        ranked = sorted(scored_nodes, key=lambda x: x[0], reverse=True)
        top = ranked[:top_k]
        return [s for s, _ in top], [n for _, n in top]

    def retrieve_context(self, question: str, top_k: int = 3) -> Tuple[str, List[TextNode], List[float]]:
        self._ensure_loaded()
        retriever = self.index.as_retriever(similarity_top_k=top_k)  # type: ignore
        retrieved_nodes = retriever.retrieve(question)
        scores, nodes = self.rerank_nodes(question, retrieved_nodes, top_k)
        context = "\n\n".join(n.get_content()[:500] for n in nodes)
        return context, nodes, scores

    # ---------- API publique ----------
    def ask(self, question: str, allow_fallback: bool = False) -> str:
        logger.info(f"💬 [Non-stream] Question reçue : {question}")
        is_hello = self._is_greeting(question)

        use_rag = (self._loaded and not is_hello) or (not self._loaded and self._should_use_rag_fast(question))
        if use_rag:
            top_k = self.get_adaptive_top_k(question)
            context, _, scores = self.retrieve_context(question, top_k)
            mode = self._decide_mode(scores, tau=0.32, is_greeting=is_hello)
            if mode == "rag":
                prompt = (
                    "Instruction: Réponds uniquement à partir du contexte. "
                    "Si la réponse n'est pas déductible, réponds exactement: \"Information non présente dans le contexte.\""
                    f"\n\nContexte :\n{context}\n\nQuestion : {question}\nRéponse :"
                )
                return self._complete(prompt, stop=DEFAULT_STOPS, raw=False)

        # LLM pur
        prompt_llm = (
            "Réponds brièvement et précisément en français.\n"
            f"Question : {question}\nRéponse :"
        )
        return self._complete(prompt_llm, stop=DEFAULT_STOPS, raw=False)

    def ask_stream(self, question: str, allow_fallback: bool = False) -> Iterable[str]:
        logger.info(f"💬 [Stream] Question reçue : {question}")
        is_hello = self._is_greeting(question)

        use_rag = (self._loaded and not is_hello) or (not self._loaded and self._should_use_rag_fast(question))
        if use_rag:
            top_k = self.get_adaptive_top_k(question)
            context, _, scores = self.retrieve_context(question, top_k)
            mode = self._decide_mode(scores, tau=0.32, is_greeting=is_hello)
            if mode == "rag":
                prompt = (
                    "Instruction: Réponds uniquement à partir du contexte. "
                    "Si la réponse n'est pas déductible, réponds exactement: \"Information non présente dans le contexte.\""
                    f"\n\nContexte :\n{context}\n\nQuestion : {question}\nRéponse :"
                )
                logger.info("📡 Début streaming (RAG)...")
                for token in self._complete_stream(prompt, stop=DEFAULT_STOPS, raw=False):
                    yield token
                logger.info("📡 Fin streaming (RAG).")
                return

        # LLM pur
        prompt_llm = (
            "Réponds brièvement et précisément en français.\n"
            f"Question : {question}\nRéponse :"
        )
        logger.info("📡 Début streaming (LLM pur)...")
        for token in self._complete_stream(prompt_llm, stop=DEFAULT_STOPS, raw=False):
            yield token
        logger.info("📡 Fin streaming (LLM pur).")