Spaces:
Paused
Paused
File size: 14,249 Bytes
e7a5765 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
import os
import json
import pickle
import textwrap
import logging
from typing import List, Optional, Dict, Any, Iterable, Tuple
import requests
import faiss
import numpy as np
from llama_index.core import VectorStoreIndex
from llama_index.core.schema import TextNode
from llama_index.vector_stores.faiss import FaissVectorStore
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from sentence_transformers.util import cos_sim
# === Logger configuration ===
logger = logging.getLogger("RAGEngine")
logger.setLevel(logging.INFO)
handler = logging.StreamHandler()
formatter = logging.Formatter("[%(asctime)s] %(levelname)s - %(message)s")
handler.setFormatter(formatter)
if not logger.handlers:
logger.addHandler(handler)
MAX_TOKENS = 64 # bornage court sur CPU-only
DEFAULT_STOPS = ["</s>", "\n\n", "\nQuestion:", "Question:"]
class OllamaClient:
"""
Minimal Ollama client for /api/generate (text completion) with streaming support.
"""
def __init__(self, model: str, host: Optional[str] = None, timeout: int = 300):
self.model = model
self.host = host or os.getenv("OLLAMA_HOST", "http://localhost:11434")
self.timeout = timeout
self._gen_url = self.host.rstrip("/") + "/api/generate"
def generate(
self,
prompt: str,
stop: Optional[List[str]] = None,
max_tokens: Optional[int] = None,
stream: bool = False,
options: Optional[Dict[str, Any]] = None,
raw: bool = False,
) -> str | Iterable[str]:
payload: Dict[str, Any] = {
"model": self.model,
"prompt": prompt,
"stream": stream,
}
if raw:
payload["raw"] = True # IMPORTANT: désactive le template Modelfile
if stop:
payload["stop"] = stop
if max_tokens is not None:
payload["num_predict"] = int(max_tokens) # nommage Ollama
if options:
payload["options"] = options
logger.debug(f"POST {self._gen_url} (stream={stream})")
if stream:
with requests.post(self._gen_url, json=payload, stream=True, timeout=self.timeout) as r:
r.raise_for_status()
for line in r.iter_lines(decode_unicode=True):
if not line:
continue
try:
data = json.loads(line)
except Exception:
continue
# En stream, Ollama renvoie des morceaux dans "response"
if "response" in data and not data.get("done"):
yield data["response"]
if data.get("done"):
break
return
r = requests.post(self._gen_url, json=payload, timeout=self.timeout)
r.raise_for_status()
data = r.json()
return data.get("response", "")
class RAGEngine:
def __init__(
self,
model_name: str,
vector_path: str,
index_path: str,
model_threads: int = 4,
ollama_host: Optional[str] = None,
ollama_opts: Optional[Dict[str, Any]] = None,
):
"""
Args:
model_name: e.g. "noushermes_rag"
vector_path: pickle file with chunk texts list[str]
index_path: FAISS index path
model_threads: forwarded as a hint to Ollama options
ollama_host: override OLLAMA_HOST (default http://localhost:11434)
ollama_opts: extra Ollama options (temperature, num_ctx, num_batch, num_thread)
"""
logger.info(f"🔎 rag_model_ollama source: {__file__}")
logger.info("📦 Initialisation du moteur RAG (Ollama)...")
# Options Ollama (par défaut optimisées CPU)
opts = dict(ollama_opts or {})
opts.setdefault("temperature", 0.0)
opts.setdefault("num_ctx", 512)
opts.setdefault("num_batch", 16)
if "num_thread" not in opts and model_threads:
opts["num_thread"] = int(model_threads)
self.llm = OllamaClient(model=model_name, host=ollama_host)
self.ollama_opts = opts
# Embedding model pour retrieval / rerank
self.embed_model = HuggingFaceEmbedding(model_name="intfloat/multilingual-e5-base")
logger.info(f"📂 Chargement des données vectorielles depuis {vector_path}")
with open(vector_path, "rb") as f:
chunk_texts: List[str] = pickle.load(f)
nodes = [TextNode(text=chunk) for chunk in chunk_texts]
faiss_index = faiss.read_index(index_path)
vector_store = FaissVectorStore(faiss_index=faiss_index)
self.index = VectorStoreIndex(nodes=nodes, embed_model=self.embed_model, vector_store=vector_store)
logger.info("✅ Moteur RAG (Ollama) initialisé avec succès.")
# ---------------- LLM helpers (via Ollama) ----------------
def _complete(
self,
prompt: str,
stop: Optional[List[str]] = None,
max_tokens: int = MAX_TOKENS,
raw: bool = True
) -> str:
text = self.llm.generate(
prompt=prompt,
stop=stop or DEFAULT_STOPS,
max_tokens=max_tokens,
stream=False,
options=self.ollama_opts,
raw=raw, # toujours True pour bypass Modelfile
)
# Par sécurité si un générateur se glisse quand stream=False
try:
if hasattr(text, "__iter__") and not isinstance(text, (str, bytes)):
chunks = []
for t in text:
if not isinstance(t, (str, bytes)):
continue
chunks.append(t)
text = "".join(chunks)
except Exception:
pass
return (text or "").strip()
def _complete_stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
max_tokens: int = MAX_TOKENS,
raw: bool = True
) -> Iterable[str]:
return self.llm.generate(
prompt=prompt,
stop=stop or DEFAULT_STOPS,
max_tokens=max_tokens,
stream=True,
options=self.ollama_opts,
raw=raw, # toujours True pour bypass Modelfile
)
# ---------------- Utilities ----------------
def _is_greeting(self, text: str) -> bool:
s = text.lower().strip()
return s in {"bonjour", "salut", "hello", "bonsoir", "hi", "coucou", "yo"} or len(s.split()) <= 2
def _decide_mode(self, scores: List[float], tau: float = 0.32, is_greeting: bool = False) -> str:
if is_greeting:
return "llm"
top = scores[0] if scores else 0.0
return "rag" if top >= tau else "llm"
def _stream_with_local_stops(self, tokens: Iterable[str], stops: List[str]) -> Iterable[str]:
"""
Coupe localement le stream si un stop apparaît, même si le serveur ne s'arrête pas.
"""
buffer = ""
for chunk in tokens:
buffer += chunk
# Check si un des stops est présent dans le buffer
hit = None
for s in stops:
idx = buffer.find(s)
if idx != -1:
hit = (s, idx)
break
if hit:
s, idx = hit
# Yield tout avant le stop, puis stoppe
yield buffer[:idx]
break
else:
# Si pas de stop, on envoie le chunk tel quel
yield chunk
# ---------------- Retrieval + (optional) rerank ----------------
def get_adaptive_top_k(self, question: str) -> int:
q = question.lower()
if len(q.split()) <= 7:
top_k = 8
elif any(w in q for w in ["liste", "résume", "quels sont", "explique", "comment"]):
top_k = 10
else:
top_k = 8
logger.info(f"🔢 top_k déterminé automatiquement : {top_k}")
return top_k
def rerank_nodes(self, question: str, retrieved_nodes, top_k: int = 3) -> Tuple[List[float], List[TextNode]]:
logger.info(f"🔍 Re-ranking des {len(retrieved_nodes)} chunks pour la question : « {question} »")
q_emb = self.embed_model.get_query_embedding(question)
scored_nodes: List[Tuple[float, TextNode]] = []
for node in retrieved_nodes:
chunk_text = node.get_content()
chunk_emb = self.embed_model.get_text_embedding(chunk_text)
score = cos_sim(q_emb, chunk_emb).item()
scored_nodes.append((score, node))
ranked = sorted(scored_nodes, key=lambda x: x[0], reverse=True)
logger.info("📊 Chunks les plus pertinents :")
for i, (score, node) in enumerate(ranked[:top_k]):
chunk_preview = textwrap.shorten(node.get_content().replace("\n", " "), width=100)
logger.info(f"#{i+1} | Score: {score:.4f} | {chunk_preview}")
top = ranked[:top_k]
scores = [s for s, _ in top]
nodes = [n for _, n in top]
return scores, nodes
def retrieve_context(self, question: str, top_k: int = 3) -> Tuple[str, List[TextNode], List[float]]:
logger.info("📥 Récupération du contexte...")
retriever = self.index.as_retriever(similarity_top_k=top_k)
retrieved_nodes = retriever.retrieve(question)
scores, nodes = self.rerank_nodes(question, retrieved_nodes, top_k)
context = "\n\n".join(n.get_content()[:500] for n in nodes)
return context, nodes, scores
# ---------------- Public API ----------------
def ask(self, question_raw: str, allow_fallback: bool = True) -> str:
logger.info(f"💬 Question reçue : {question_raw}")
is_hello = self._is_greeting(question_raw)
# retrieval (sauf salutations)
context, scores = "", []
if not is_hello:
top_k = self.get_adaptive_top_k(question_raw)
context, _, scores = self.retrieve_context(question_raw, top_k)
# router RAG vs LLM
mode = self._decide_mode(scores, tau=0.32, is_greeting=is_hello)
logger.info(f"🧭 Mode choisi : {mode}")
if mode == "rag":
prompt = (
"Instruction: Réponds uniquement à partir du contexte. "
"Si la réponse n'est pas déductible, réponds exactement: \"Information non présente dans le contexte.\""
"\n\nContexte :\n"
f"{context}\n\n"
f"Question : {question_raw}\n"
"Réponse :"
)
resp = self._complete(
prompt,
stop=DEFAULT_STOPS,
max_tokens=MAX_TOKENS,
raw=True, # ✅ bypass Modelfile/template
).strip()
# fallback LLM‑pur si le RAG n'a rien trouvé
if allow_fallback and "Information non présente" in resp:
logger.info("↪️ Fallback LLM‑pur (hors contexte)")
prompt_llm = (
"Réponds brièvement et précisément en français.\n"
f"Question : {question_raw}\n"
"Réponse :"
)
resp = self._complete(
prompt_llm,
stop=DEFAULT_STOPS,
max_tokens=MAX_TOKENS,
raw=True
).strip()
ellipsis = "..." if len(resp) > 120 else ""
logger.info(f"🧠 Réponse générée : {resp[:120]}{ellipsis}")
return resp
# LLM pur (salutation ou score faible)
prompt_llm = (
"Réponds brièvement et précisément en français.\n"
f"Question : {question_raw}\n"
"Réponse :"
)
resp = self._complete(
prompt_llm,
stop=DEFAULT_STOPS,
max_tokens=MAX_TOKENS,
raw=True
).strip()
ellipsis = "..." if len(resp) > 120 else ""
logger.info(f"🧠 Réponse générée : {resp[:120]}{ellipsis}")
return resp
def ask_stream(self, question: str, allow_fallback: bool = False) -> Iterable[str]:
logger.info(f"💬 [Stream] Question reçue : {question}")
is_hello = self._is_greeting(question)
context, scores = "", []
if not is_hello:
top_k = self.get_adaptive_top_k(question)
context, _, scores = self.retrieve_context(question, top_k)
mode = self._decide_mode(scores, tau=0.32, is_greeting=is_hello)
logger.info(f"🧭 Mode choisi (stream) : {mode}")
stops = DEFAULT_STOPS
if mode == "rag":
prompt = (
"Instruction: Réponds uniquement à partir du contexte. "
"Si la réponse n'est pas déductible, réponds exactement: \"Information non présente dans le contexte.\""
"\n\nContexte :\n"
f"{context}\n\n"
f"Question : {question}\n"
"Réponse :"
)
logger.info("📡 Début du streaming de la réponse (RAG)...")
tokens = self._complete_stream(
prompt,
stop=stops,
max_tokens=MAX_TOKENS,
raw=True,
)
# Blindage local: coupe si un stop apparaît
for t in self._stream_with_local_stops(tokens, stops):
if t:
yield t
logger.info("📡 Fin du streaming de la réponse (RAG).")
return
# LLM pur en stream
prompt_llm = (
"Réponds brièvement et précisément en français.\n"
f"Question : {question}\n"
"Réponse :"
)
logger.info("📡 Début du streaming de la réponse (LLM pur)...")
tokens = self._complete_stream(
prompt_llm,
stop=stops,
max_tokens=MAX_TOKENS,
raw=True,
)
for t in self._stream_with_local_stops(tokens, stops):
if t:
yield t
logger.info("📡 Fin du streaming de la réponse (LLM pur).")
|