File size: 9,238 Bytes
e7a5765
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import os
import pickle
import logging
from typing import List, Optional, Dict, Any, Iterable, Tuple
import requests
import faiss
import json
from llama_index.core import VectorStoreIndex
from llama_index.core.schema import TextNode
from llama_index.vector_stores.faiss import FaissVectorStore
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from sentence_transformers.util import cos_sim

# === Logger configuration ===
logger = logging.getLogger("RAGEngine")
logger.setLevel(logging.INFO)
handler = logging.StreamHandler()
formatter = logging.Formatter("[%(asctime)s] %(levelname)s - %(message)s")
handler.setFormatter(formatter)
if not logger.handlers:
    logger.addHandler(handler)

MAX_TOKENS = 64
DEFAULT_STOPS = ["### Réponse:", "\n\n", "###"]

class OllamaClient:
    def __init__(self, model: str, host: Optional[str] = None, timeout: int = 300):
        self.model = model
        self.host = host or os.getenv("OLLAMA_HOST", "http://localhost:11434")
        self.timeout = timeout
        self._gen_url = self.host.rstrip("/") + "/api/generate"

    def generate(self, prompt: str, stop: Optional[List[str]] = None,
                 max_tokens: Optional[int] = None, stream: bool = False,
                 options: Optional[Dict[str, Any]] = None, raw: bool = False) -> str | Iterable[str]:
        payload: Dict[str, Any] = {
            "model": self.model,
            "prompt": prompt,
            "stream": stream,
        }
        if raw:
            payload["raw"] = True
        if stop:
            payload["stop"] = stop
        if max_tokens is not None:
            payload["num_predict"] = int(max_tokens)
        # ❌ Pas d'options envoyées pour laisser Ollama choisir ses defaults

        logger.debug(f"POST {self._gen_url} (stream={stream})")

        if stream:
            with requests.post(self._gen_url, json=payload, stream=True, timeout=self.timeout) as r:
                r.raise_for_status()
                for line in r.iter_lines(decode_unicode=True):
                    if not line:
                        continue
                    try:
                        data = json.loads(line)
                    except Exception:
                        continue
                    if "response" in data and not data.get("done"):
                        yield data["response"]
                    if data.get("done"):
                        break
            return

        r = requests.post(self._gen_url, json=payload, timeout=self.timeout)
        r.raise_for_status()
        data = r.json()
        return data.get("response", "")


class RAGEngine:
    def __init__(self, model_name: str, vector_path: str, index_path: str,
                 model_threads: int = 4, ollama_host: Optional[str] = None,
                 ollama_opts: Optional[Dict[str, Any]] = None):

        logger.info(f"🔎 rag_model_ollama source: {__file__}")
        logger.info("📦 Initialisation du moteur RAG (Ollama)...")

        # ❌ Pas d'options Ollama stockées
        self.llm = OllamaClient(model=model_name, host=ollama_host)
        self.embed_model = HuggingFaceEmbedding(model_name="intfloat/multilingual-e5-base")

        logger.info(f"📂 Chargement des données vectorielles depuis {vector_path}")
        with open(vector_path, "rb") as f:
            chunk_texts: List[str] = pickle.load(f)
        nodes = [TextNode(text=chunk) for chunk in chunk_texts]

        faiss_index = faiss.read_index(index_path)
        vector_store = FaissVectorStore(faiss_index=faiss_index)
        self.index = VectorStoreIndex(nodes=nodes, embed_model=self.embed_model, vector_store=vector_store)

        logger.info("✅ Moteur RAG (Ollama) initialisé avec succès.")

        # Warmup pour charger le modèle
        try:
            logger.info("⚡ Warmup du modèle Ollama...")
            for _ in self._complete_stream("Bonjour", max_tokens=8, raw=False):
                pass
        except Exception as e:
            logger.warning(f"Warmup échoué : {e}")

    def _complete_stream(self, prompt: str, stop: Optional[List[str]] = None,
                         max_tokens: int = MAX_TOKENS, raw: bool = False):
        return self.llm.generate(prompt=prompt, stop=stop, max_tokens=max_tokens,
                                 stream=True, raw=raw)

    def _complete(self, prompt: str, stop: Optional[List[str]] = None,
                  max_tokens: int = 128, raw: bool = False) -> str:
        text = self.llm.generate(prompt=prompt, stop=stop, max_tokens=max_tokens,
                                 stream=False, raw=raw)
        return (text or "").strip()

    def _is_greeting(self, text: str) -> bool:
        s = text.lower().strip()
        return s in {"bonjour", "salut", "hello", "bonsoir", "hi", "coucou", "yo"} or len(s.split()) <= 2

    def _decide_mode(self, scores: List[float], tau: float = 0.32, is_greeting: bool = False) -> str:
        if is_greeting:
            return "llm"
        top = scores[0] if scores else 0.0
        return "rag" if top >= tau else "llm"

    def get_adaptive_top_k(self, question: str) -> int:
        q = question.lower()
        if len(q.split()) <= 7:
            top_k = 8
        elif any(w in q for w in ["liste", "résume", "quels sont", "explique", "comment"]):
            top_k = 10
        else:
            top_k = 8
        logger.info(f"🔢 top_k déterminé automatiquement : {top_k}")
        return top_k

    def rerank_nodes(self, question: str, retrieved_nodes, top_k: int = 3) -> Tuple[List[float], List[TextNode]]:
        logger.info(f"🔍 Re-ranking des {len(retrieved_nodes)} chunks pour : « {question} »")
        q_emb = self.embed_model.get_query_embedding(question)
        scored_nodes: List[Tuple[float, TextNode]] = []
        for node in retrieved_nodes:
            chunk_emb = self.embed_model.get_text_embedding(node.get_content())
            score = cos_sim(q_emb, chunk_emb).item()
            scored_nodes.append((score, node))
        ranked = sorted(scored_nodes, key=lambda x: x[0], reverse=True)
        top = ranked[:top_k]
        return [s for s, _ in top], [n for _, n in top]

    def retrieve_context(self, question: str, top_k: int = 3) -> Tuple[str, List[TextNode], List[float]]:
        retriever = self.index.as_retriever(similarity_top_k=top_k)
        retrieved_nodes = retriever.retrieve(question)
        scores, nodes = self.rerank_nodes(question, retrieved_nodes, top_k)
        context = "\n\n".join(n.get_content()[:500] for n in nodes)
        return context, nodes, scores

    def ask(self, question: str, allow_fallback: bool = False) -> str:
        """Génération non-stream"""
        logger.info(f"💬 [Non-stream] Question reçue : {question}")
        is_hello = self._is_greeting(question)
        context, scores = "", []
        if not is_hello:
            top_k = self.get_adaptive_top_k(question)
            context, _, scores = self.retrieve_context(question, top_k)

        mode = self._decide_mode(scores, tau=0.32, is_greeting=is_hello)
        logger.info(f"🧭 Mode choisi (non-stream) : {mode}")

        if mode == "rag":
            prompt = (
                "Instruction: Réponds uniquement à partir du contexte. "
                "Si la réponse n'est pas déductible, réponds exactement: \"Information non présente dans le contexte.\""
                f"\n\nContexte :\n{context}\n\nQuestion : {question}\nRéponse :"
            )
            return self._complete(prompt, stop=DEFAULT_STOPS, raw=False)

        prompt_llm = (
            "Réponds brièvement et précisément en français.\n"
            f"Question : {question}\nRéponse :"
        )
        return self._complete(prompt_llm, stop=DEFAULT_STOPS, raw=False)

    def ask_stream(self, question: str, allow_fallback: bool = False) -> Iterable[str]:
        logger.info(f"💬 [Stream] Question reçue : {question}")
        is_hello = self._is_greeting(question)
        context, scores = "", []
        if not is_hello:
            top_k = self.get_adaptive_top_k(question)
            context, _, scores = self.retrieve_context(question, top_k)

        mode = self._decide_mode(scores, tau=0.32, is_greeting=is_hello)
        logger.info(f"🧭 Mode choisi (stream) : {mode}")

        if mode == "rag":
            prompt = (
                "Instruction: Réponds uniquement à partir du contexte. "
                "Si la réponse n'est pas déductible, réponds exactement: \"Information non présente dans le contexte.\""
                f"\n\nContexte :\n{context}\n\nQuestion : {question}\nRéponse :"
            )
            logger.info("📡 Début streaming (RAG)...")
            for token in self._complete_stream(prompt, stop=DEFAULT_STOPS, raw=False):
                yield token
            logger.info("📡 Fin streaming (RAG).")
            return

        prompt_llm = (
            "Réponds brièvement et précisément en français.\n"
            f"Question : {question}\nRéponse :"
        )
        logger.info("📡 Début streaming (LLM pur)...")
        for token in self._complete_stream(prompt_llm, stop=DEFAULT_STOPS, raw=False):
            yield token
        logger.info("📡 Fin streaming (LLM pur).")