Spaces:
Paused
Paused
File size: 11,982 Bytes
e7a5765 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
import os
import pickle
import textwrap
import logging
from typing import List, Optional, Dict, Any, Iterable
import requests
import faiss
import numpy as np
from llama_index.core import VectorStoreIndex
from llama_index.core.schema import TextNode
from llama_index.vector_stores.faiss import FaissVectorStore
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from sentence_transformers.util import cos_sim
# === Logger configuration ===
logger = logging.getLogger("RAGEngine")
logger.setLevel(logging.INFO)
handler = logging.StreamHandler()
formatter = logging.Formatter("[%(asctime)s] %(levelname)s - %(message)s")
handler.setFormatter(formatter)
if not logger.handlers:
logger.addHandler(handler)
#MAX_TOKENS = 512
MAX_TOKENS = 64
class OllamaClient:
"""
Minimal Ollama client for /api/generate (text completion) with streaming support.
Docs: https://github.com/ollama/ollama/blob/main/docs/api.md#generate-a-completion
"""
def __init__(self, model: str, host: Optional[str] = None, timeout: int = 300):
self.model = model
self.host = host or os.getenv("OLLAMA_HOST", "http://localhost:11434")
self.timeout = timeout
self._gen_url = self.host.rstrip("/") + "/api/generate"
def generate(
self,
prompt: str,
stop: Optional[List[str]] = None,
max_tokens: Optional[int] = None,
stream: bool = False,
options: Optional[Dict[str, Any]] = None,
raw: bool = False
) -> str | Iterable[str]:
payload = {
"model": self.model,
"prompt": prompt,
"stream": stream,
}
if raw:
payload["raw"]=True
if stop:
payload["stop"] = stop
if max_tokens is not None:
# Ollama uses "num_predict" for max new tokens
payload["num_predict"] = int(max_tokens)
if options:
payload["options"] = options
logger.debug(f"POST {self._gen_url} (stream={stream})")
if stream:
with requests.post(self._gen_url, json=payload, stream=True, timeout=self.timeout) as r:
r.raise_for_status()
for line in r.iter_lines(decode_unicode=True):
if not line:
continue
try:
data = json.loads(line)
except Exception:
# In case a broken line appears
continue
if "response" in data and data.get("done") is not True:
yield data["response"]
if data.get("done"):
break
return
# Non-streaming
r = requests.post(self._gen_url, json=payload, timeout=self.timeout)
r.raise_for_status()
data = r.json()
return data.get("response", "")
# Lazy import json to keep top clean
import json
class RAGEngine:
def __init__(
self,
model_name: str,
vector_path: str,
index_path: str,
model_threads: int = 4,
ollama_host: Optional[str] = None,
ollama_opts: Optional[Dict[str, Any]] = None,
):
"""
Args:
model_name: e.g. "nous-hermes2:Q4_K_M" or "llama3.1:8b-instruct-q4_K_M"
vector_path: pickle file with chunk texts list[str]
index_path: FAISS index path
model_threads: forwarded to Ollama via options.n_threads (if supported by the model)
ollama_host: override OLLAMA_HOST (default http://localhost:11434)
ollama_opts: extra Ollama options (e.g., temperature, top_p, num_gpu, num_thread)
"""
logger.info(f"🔎 rag_model_ollama source: {__file__}")
logger.info("📦 Initialisation du moteur RAG (Ollama)...")
# Build options
opts = dict(ollama_opts or {})
# Common low-latency defaults; user can override via ollama_opts
opts.setdefault("temperature", 0.1)
# Try to pass thread hint if supported by the backend
if "num_thread" not in opts and model_threads:
opts["num_thread"] = int(model_threads)
self.llm = OllamaClient(model=model_name, host=ollama_host)
self.ollama_opts = opts
#self.embed_model = HuggingFaceEmbedding(model_name="sentence-transformers/all-MiniLM-L6-v2")
self.embed_model = HuggingFaceEmbedding(model_name="intfloat/multilingual-e5-base")
logger.info(f"📂 Chargement des données vectorielles depuis {vector_path}")
with open(vector_path, "rb") as f:
chunk_texts = pickle.load(f)
nodes = [TextNode(text=chunk) for chunk in chunk_texts]
faiss_index = faiss.read_index(index_path)
vector_store = FaissVectorStore(faiss_index=faiss_index)
self.index = VectorStoreIndex(nodes=nodes, embed_model=self.embed_model, vector_store=vector_store)
logger.info("✅ Moteur RAG (Ollama) initialisé avec succès.")
# ---------------- LLM helpers (via Ollama) ----------------
def _complete(self, prompt: str, stop: Optional[List[str]] = None, max_tokens: int = 128,raw:bool=True) -> str:
text = self.llm.generate(
prompt=prompt,
stop=stop,
max_tokens=max_tokens,
stream=False,
options=self.ollama_opts,
raw=raw
)
# Some Ollama setups may stream even when stream=False. Coerce generators to string.
try:
if hasattr(text, "__iter__") and not isinstance(text, (str, bytes)):
chunks = []
for t in text:
if not isinstance(t, (str, bytes)):
continue
chunks.append(t)
text = "".join(chunks)
except Exception:
pass
return (text or "").strip()
def _complete_stream(self, prompt: str, stop: Optional[List[str]] = None, max_tokens: int = MAX_TOKENS,raw : bool =True):
return self.llm.generate(
prompt=prompt,
stop=stop,
max_tokens=max_tokens,
stream=True,
options=self.ollama_opts,
raw=raw
)
# ---------------- Reformulation ----------------
def reformulate_question(self, question: str) -> str:
logger.info("🔁 Reformulation de la question (sans contexte)...")
prompt = f"""Tu es un assistant expert chargé de clarifier des questions floues.
Transforme la question suivante en une question claire, explicite et complète, sans ajouter d'informations extérieures.
Question floue : {question}
Question reformulée :"""
reformulated = self._complete(prompt, stop=["### Réponse:", "\n\n", "###"], max_tokens=128)
logger.info(f"📝 Reformulée : {reformulated}")
return reformulated.strip().split("###")[0]
def reformulate_with_context(self, question: str, context_sample: str) -> str:
logger.info("🔁 Reformulation de la question avec contexte...")
prompt = f"""Tu es un assistant expert en machine learning. Ton rôle est de reformuler les questions utilisateur en tenant compte du contexte ci-dessous, extrait d’un rapport technique sur un projet de reconnaissance de maladies de plantes.
Ta mission est de transformer une question vague ou floue en une question précise et adaptée au contenu du rapport. Ne donne pas une interprétation hors sujet. Ne reformule pas en termes de produits commerciaux.
Contexte :
{context_sample}
Question initiale : {question}
Question reformulée :"""
reformulated = self._complete(prompt, stop=["### Réponse:", "\n\n", "###"], max_tokens=128)
logger.info(f"📝 Reformulée avec contexte : {reformulated}")
return reformulated
# ---------------- Retrieval ----------------
def get_adaptive_top_k(self, question: str) -> int:
q = question.lower()
if len(q.split()) <= 7:
top_k = 8
elif any(w in q for w in ["liste", "résume", "quels sont", "explique", "comment"]):
top_k = 10
else:
top_k = 8
logger.info(f"🔢 top_k déterminé automatiquement : {top_k}")
return top_k
def rerank_nodes(self, question: str, retrieved_nodes, top_k: int = 3):
logger.info(f"🔍 Re-ranking des {len(retrieved_nodes)} chunks pour la question : « {question} »")
q_emb = self.embed_model.get_query_embedding(question)
scored_nodes = []
for node in retrieved_nodes:
chunk_text = node.get_content()
chunk_emb = self.embed_model.get_text_embedding(chunk_text)
score = cos_sim(q_emb, chunk_emb).item()
scored_nodes.append((score, node))
ranked_nodes = sorted(scored_nodes, key=lambda x: x[0], reverse=True)
logger.info("📊 Chunks les plus pertinents :")
for i, (score, node) in enumerate(ranked_nodes[:top_k]):
chunk_preview = textwrap.shorten(node.get_content().replace("\n", " "), width=100)
logger.info(f"#{i+1} | Score: {score:.4f} | {chunk_preview}")
return [n for _, n in ranked_nodes[:top_k]]
def retrieve_context(self, question: str, top_k: int = 3):
logger.info(f"📥 Récupération du contexte...")
retriever = self.index.as_retriever(similarity_top_k=top_k)
retrieved_nodes = retriever.retrieve(question)
reranked_nodes = self.rerank_nodes(question, retrieved_nodes, top_k)
context = "\n\n".join(n.get_content()[:500] for n in reranked_nodes)
return context, reranked_nodes
# ---------------- Public API ----------------
def ask(self, question_raw: str) -> str:
logger.info(f"💬 Question reçue : {question_raw}")
context=""
reformulate=False
if reformulate :
if len(question_raw.split()) <= 2:
context_sample, _ = self.retrieve_context(question_raw, top_k=3)
reformulated = self.reformulate_with_context(question_raw, context_sample)
else:
reformulated = self.reformulate_question(question_raw)
logger.info(f"📝 Question reformulée : {reformulated}")
top_k = self.get_adaptive_top_k(reformulated)
context, _ = self.retrieve_context(reformulated, top_k)
else:
reformulated=question_raw
prompt = f"""### Instruction: En te basant uniquement sur le contexte ci-dessous, réponds à la question de manière précise et en français.
Si la réponse ne peut pas être déduite du contexte, indique : "Information non présente dans le contexte."
Contexte :
{context}
Question : {reformulated}
### Réponse:"""
response = self._complete(prompt, stop=["### Réponse:", "\n\n", "###"], max_tokens=MAX_TOKENS)
response = response.strip().split("###")[0]
ellipsis = "..." if len(response) > 120 else ""
logger.info(f"🧠 Réponse générée : {response[:120]}{ellipsis}")
return response
def ask_stream(self, question: str):
logger.info(f"💬 [Stream] Question reçue : {question}")
top_k = self.get_adaptive_top_k(question)
context, _ = self.retrieve_context(question, top_k)
context="" #for test purpose
prompt = f"""### Instruction: En te basant uniquement sur le contexte ci-dessous, réponds à la question de manière précise et en français.
Si la réponse ne peut pas être déduite du contexte, indique : "Information non présente dans le contexte."
Contexte :
{context}
Question : {question}
### Réponse:"""
logger.info("📡 Début du streaming de la réponse...")
for token in self._complete_stream(prompt, stop=["### Réponse:", "\n\n", "###"], max_tokens=MAX_TOKENS,raw=False):
yield token
logger.info("📡 Fin du streaming de la réponse...") |