Spaces:
Paused
Paused
reorganisation
Browse files- app.py +76 -59
- app_ollama_v1.py +0 -108
- rag_model_ollama_v1.py → rag_model_ollama.py +0 -0
- sauve/app_old.py +91 -0
- app_ollama_v1 copy 2.py → sauve/app_ollama_v1 copy 2.py +0 -0
- app_ollama_v1 copy.py → sauve/app_ollama_v1 copy.py +0 -0
- app_ollama_v1_chat.py → sauve/app_ollama_v1_chat.py +0 -0
- log_app.txt → sauve/log_app.txt +0 -0
- log_cli.txt → sauve/log_cli.txt +0 -0
- logs → sauve/logs +0 -0
- rag_model.py → sauve/rag_model.py +0 -0
- rag_model_ollama_v1 copy 2.py → sauve/rag_model_ollama_v1 copy 2.py +0 -0
- rag_model_ollama_v1 copy.py → sauve/rag_model_ollama_v1 copy.py +0 -0
- rag_model_ollama_v1 stable_lazy.py → sauve/rag_model_ollama_v1 stable_lazy.py +0 -0
- rag_model_ollama_v1_ok_full_load.py → sauve/rag_model_ollama_v1_ok_full_load.py +0 -0
- rag_model_ollama_v1_ok_llm.py → sauve/rag_model_ollama_v1_ok_llm.py +0 -0
- rag_model_ollama_v2.py → sauve/rag_model_ollama_v2.py +0 -0
- rag_model_optimise.py → sauve/rag_model_optimise.py +0 -0
- requirements-base.txt → sauve/requirements-base.txt +0 -0
- requirements._extendedtxt → sauve/requirements._extendedtxt +0 -0
- step1_read_pdf.py → sauve/step1_read_pdf.py +0 -0
- step2_chunk.py → sauve/step2_chunk.py +0 -0
- step3_embed.py → sauve/step3_embed.py +0 -0
- step3_llamaindex.py → sauve/step3_llamaindex.py +0 -0
- step3_llamaindex_evol.py → sauve/step3_llamaindex_evol.py +0 -0
- step4_faiss.py → sauve/step4_faiss.py +0 -0
- step4b_shell.py → sauve/step4b_shell.py +0 -0
- tester.py → sauve/tester.py +0 -0
app.py
CHANGED
@@ -1,91 +1,108 @@
|
|
1 |
-
import
|
2 |
-
from llama_cpp import Llama
|
3 |
-
import os
|
4 |
-
from rag_model import RAGEngine
|
5 |
-
|
6 |
-
#from rag_model_optimise import RAGEngine
|
7 |
import logging
|
|
|
8 |
from huggingface_hub import hf_hub_download
|
9 |
-
import time
|
10 |
-
|
11 |
|
12 |
-
|
13 |
-
|
14 |
|
15 |
-
#
|
16 |
-
|
17 |
-
patch_llamaindex_nltk()
|
18 |
|
19 |
logger = logging.getLogger("Streamlit")
|
20 |
logger.setLevel(logging.INFO)
|
21 |
handler = logging.StreamHandler()
|
22 |
formatter = logging.Formatter("[%(asctime)s] %(levelname)s - %(message)s")
|
23 |
handler.setFormatter(formatter)
|
24 |
-
logger.
|
25 |
-
|
26 |
|
27 |
-
|
28 |
-
logger.info(f"ENV :{ENV}")
|
29 |
|
30 |
-
#
|
|
|
|
|
31 |
|
|
|
32 |
if ENV == "local":
|
33 |
-
|
34 |
-
|
35 |
-
vectors_path="chatbot-models/vectordb_docling/chunks.pkl"
|
36 |
-
|
37 |
else:
|
38 |
-
# Télécharger le modèle GGUF
|
39 |
-
model_path = hf_hub_download(
|
40 |
-
repo_id="rkonan/chatbot-models",
|
41 |
-
filename="chatbot-models/Nous-Hermes-2-Mistral-7B-DPO.Q4_K_M.gguf",
|
42 |
-
repo_type="dataset"
|
43 |
-
)
|
44 |
-
|
45 |
-
# Télécharger les fichiers FAISS
|
46 |
faiss_index_path = hf_hub_download(
|
47 |
repo_id="rkonan/chatbot-models",
|
48 |
filename="chatbot-models/vectordb_docling/index.faiss",
|
49 |
repo_type="dataset"
|
50 |
)
|
51 |
-
|
52 |
vectors_path = hf_hub_download(
|
53 |
repo_id="rkonan/chatbot-models",
|
54 |
filename="chatbot-models/vectordb_docling/chunks.pkl",
|
55 |
repo_type="dataset"
|
56 |
)
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
st.
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
rag = RAGEngine(
|
70 |
-
|
71 |
vector_path=vectors_path,
|
72 |
index_path=faiss_index_path,
|
73 |
-
model_threads=
|
|
|
|
|
74 |
)
|
75 |
-
|
76 |
-
# 🔥 Warmup pour éviter latence au 1er appel
|
77 |
-
rag.llm("Bonjour", max_tokens=1)
|
78 |
return rag
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
st.
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
if
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
|
|
|
|
|
|
|
|
|
|
2 |
import logging
|
3 |
+
import streamlit as st
|
4 |
from huggingface_hub import hf_hub_download
|
|
|
|
|
5 |
|
6 |
+
# ✅ Nouveau moteur RAG (sans ollama_opts)
|
7 |
+
from rag_model_ollama_v1 import RAGEngine
|
8 |
|
9 |
+
# --- Config & logs ---
|
10 |
+
os.environ.setdefault("NLTK_DATA", "/home/appuser/nltk_data")
|
|
|
11 |
|
12 |
logger = logging.getLogger("Streamlit")
|
13 |
logger.setLevel(logging.INFO)
|
14 |
handler = logging.StreamHandler()
|
15 |
formatter = logging.Formatter("[%(asctime)s] %(levelname)s - %(message)s")
|
16 |
handler.setFormatter(formatter)
|
17 |
+
if not logger.handlers:
|
18 |
+
logger.addHandler(handler)
|
19 |
|
20 |
+
st.set_page_config(page_title="Chatbot RAG (Ollama)", page_icon="🤖")
|
|
|
21 |
|
22 |
+
# --- ENV ---
|
23 |
+
ENV = os.getenv("ENV", "local")
|
24 |
+
logger.info(f"ENV: {ENV}")
|
25 |
|
26 |
+
# --- Chemins FAISS & chunks ---
|
27 |
if ENV == "local":
|
28 |
+
faiss_index_path = "chatbot-models/vectordb_docling/index.faiss"
|
29 |
+
vectors_path = "chatbot-models/vectordb_docling/chunks.pkl"
|
|
|
|
|
30 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
faiss_index_path = hf_hub_download(
|
32 |
repo_id="rkonan/chatbot-models",
|
33 |
filename="chatbot-models/vectordb_docling/index.faiss",
|
34 |
repo_type="dataset"
|
35 |
)
|
|
|
36 |
vectors_path = hf_hub_download(
|
37 |
repo_id="rkonan/chatbot-models",
|
38 |
filename="chatbot-models/vectordb_docling/chunks.pkl",
|
39 |
repo_type="dataset"
|
40 |
)
|
41 |
|
42 |
+
# --- UI Sidebar ---
|
43 |
+
st.sidebar.header("⚙️ Paramètres")
|
44 |
+
default_host = os.getenv("OLLAMA_HOST", "http://localhost:11435")
|
45 |
+
ollama_host = st.sidebar.text_input("Ollama host", value=default_host)
|
46 |
+
suggested_models = [
|
47 |
+
"qwen2.5:3b-instruct-q4_K_M",
|
48 |
+
"noushermes_rag",
|
49 |
+
"mistral",
|
50 |
+
"gemma3",
|
51 |
+
"deepseek-r1",
|
52 |
+
"granite3.3",
|
53 |
+
"llama3.1:8b-instruct-q4_K_M",
|
54 |
+
"nous-hermes2:Q4_K_M",
|
55 |
+
]
|
56 |
+
model_name = st.sidebar.selectbox("Modèle Ollama", options=suggested_models, index=0)
|
57 |
+
num_threads = st.sidebar.slider("Threads (hint)", min_value=2, max_value=16, value=6, step=1)
|
58 |
+
temperature = st.sidebar.slider("Température", min_value=0.0, max_value=1.5, value=0.1, step=0.1)
|
59 |
+
|
60 |
+
st.title("🤖 Chatbot RAG Local (Ollama)")
|
61 |
+
|
62 |
+
# --- Cache du moteur ---
|
63 |
+
@st.cache_resource(show_spinner=True)
|
64 |
+
def load_rag_engine(_model_name: str, _host: str, _threads: int, _temp: float):
|
65 |
+
os.environ["OLLAMA_KEEP_ALIVE"] = "15m"
|
66 |
rag = RAGEngine(
|
67 |
+
model_name=_model_name,
|
68 |
vector_path=vectors_path,
|
69 |
index_path=faiss_index_path,
|
70 |
+
model_threads=_threads,
|
71 |
+
ollama_host=_host
|
72 |
+
# ❌ pas d'ollama_opts → Ollama choisit les defaults
|
73 |
)
|
|
|
|
|
|
|
74 |
return rag
|
75 |
|
76 |
+
rag = load_rag_engine(model_name, ollama_host, num_threads, temperature)
|
77 |
+
|
78 |
+
# --- Chat simple ---
|
79 |
+
user_input = st.text_area("Posez votre question :", height=120,
|
80 |
+
placeholder="Ex: Quels sont les traitements appliqués aux images ?")
|
81 |
+
col1, col2 = st.columns([1, 1])
|
82 |
+
|
83 |
+
# if col1.button("Envoyer"):
|
84 |
+
# if user_input.strip():
|
85 |
+
# with st.spinner("Génération en cours..."):
|
86 |
+
# try:
|
87 |
+
# response = rag.ask(user_input)
|
88 |
+
# st.markdown("**Réponse :**")
|
89 |
+
# st.success(response)
|
90 |
+
# except Exception as e:
|
91 |
+
# st.error(f"Erreur pendant la génération: {e}")
|
92 |
+
# else:
|
93 |
+
# st.info("Saisissez une question.")
|
94 |
+
|
95 |
+
if col2.button("Envoyer (stream)"):
|
96 |
+
if user_input.strip():
|
97 |
+
with st.spinner("Génération en cours (stream)..."):
|
98 |
+
try:
|
99 |
+
ph = st.empty()
|
100 |
+
acc = ""
|
101 |
+
for token in rag.ask_stream(user_input):
|
102 |
+
acc += token
|
103 |
+
ph.markdown(acc)
|
104 |
+
st.balloons()
|
105 |
+
except Exception as e:
|
106 |
+
st.error(f"Erreur pendant la génération (stream): {e}")
|
107 |
+
else:
|
108 |
+
st.info("Saisissez une question.")
|
app_ollama_v1.py
DELETED
@@ -1,108 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import logging
|
3 |
-
import streamlit as st
|
4 |
-
from huggingface_hub import hf_hub_download
|
5 |
-
|
6 |
-
# ✅ Nouveau moteur RAG (sans ollama_opts)
|
7 |
-
from rag_model_ollama_v1 import RAGEngine
|
8 |
-
|
9 |
-
# --- Config & logs ---
|
10 |
-
os.environ.setdefault("NLTK_DATA", "/home/appuser/nltk_data")
|
11 |
-
|
12 |
-
logger = logging.getLogger("Streamlit")
|
13 |
-
logger.setLevel(logging.INFO)
|
14 |
-
handler = logging.StreamHandler()
|
15 |
-
formatter = logging.Formatter("[%(asctime)s] %(levelname)s - %(message)s")
|
16 |
-
handler.setFormatter(formatter)
|
17 |
-
if not logger.handlers:
|
18 |
-
logger.addHandler(handler)
|
19 |
-
|
20 |
-
st.set_page_config(page_title="Chatbot RAG (Ollama)", page_icon="🤖")
|
21 |
-
|
22 |
-
# --- ENV ---
|
23 |
-
ENV = os.getenv("ENV", "local")
|
24 |
-
logger.info(f"ENV: {ENV}")
|
25 |
-
|
26 |
-
# --- Chemins FAISS & chunks ---
|
27 |
-
if ENV == "local":
|
28 |
-
faiss_index_path = "chatbot-models/vectordb_docling/index.faiss"
|
29 |
-
vectors_path = "chatbot-models/vectordb_docling/chunks.pkl"
|
30 |
-
else:
|
31 |
-
faiss_index_path = hf_hub_download(
|
32 |
-
repo_id="rkonan/chatbot-models",
|
33 |
-
filename="chatbot-models/vectordb_docling/index.faiss",
|
34 |
-
repo_type="dataset"
|
35 |
-
)
|
36 |
-
vectors_path = hf_hub_download(
|
37 |
-
repo_id="rkonan/chatbot-models",
|
38 |
-
filename="chatbot-models/vectordb_docling/chunks.pkl",
|
39 |
-
repo_type="dataset"
|
40 |
-
)
|
41 |
-
|
42 |
-
# --- UI Sidebar ---
|
43 |
-
st.sidebar.header("⚙️ Paramètres")
|
44 |
-
default_host = os.getenv("OLLAMA_HOST", "http://localhost:11435")
|
45 |
-
ollama_host = st.sidebar.text_input("Ollama host", value=default_host)
|
46 |
-
suggested_models = [
|
47 |
-
"qwen2.5:3b-instruct-q4_K_M",
|
48 |
-
"noushermes_rag",
|
49 |
-
"mistral",
|
50 |
-
"gemma3",
|
51 |
-
"deepseek-r1",
|
52 |
-
"granite3.3",
|
53 |
-
"llama3.1:8b-instruct-q4_K_M",
|
54 |
-
"nous-hermes2:Q4_K_M",
|
55 |
-
]
|
56 |
-
model_name = st.sidebar.selectbox("Modèle Ollama", options=suggested_models, index=0)
|
57 |
-
num_threads = st.sidebar.slider("Threads (hint)", min_value=2, max_value=16, value=6, step=1)
|
58 |
-
temperature = st.sidebar.slider("Température", min_value=0.0, max_value=1.5, value=0.1, step=0.1)
|
59 |
-
|
60 |
-
st.title("🤖 Chatbot RAG Local (Ollama)")
|
61 |
-
|
62 |
-
# --- Cache du moteur ---
|
63 |
-
@st.cache_resource(show_spinner=True)
|
64 |
-
def load_rag_engine(_model_name: str, _host: str, _threads: int, _temp: float):
|
65 |
-
os.environ["OLLAMA_KEEP_ALIVE"] = "15m"
|
66 |
-
rag = RAGEngine(
|
67 |
-
model_name=_model_name,
|
68 |
-
vector_path=vectors_path,
|
69 |
-
index_path=faiss_index_path,
|
70 |
-
model_threads=_threads,
|
71 |
-
ollama_host=_host
|
72 |
-
# ❌ pas d'ollama_opts → Ollama choisit les defaults
|
73 |
-
)
|
74 |
-
return rag
|
75 |
-
|
76 |
-
rag = load_rag_engine(model_name, ollama_host, num_threads, temperature)
|
77 |
-
|
78 |
-
# --- Chat simple ---
|
79 |
-
user_input = st.text_area("Posez votre question :", height=120,
|
80 |
-
placeholder="Ex: Quels sont les traitements appliqués aux images ?")
|
81 |
-
col1, col2 = st.columns([1, 1])
|
82 |
-
|
83 |
-
# if col1.button("Envoyer"):
|
84 |
-
# if user_input.strip():
|
85 |
-
# with st.spinner("Génération en cours..."):
|
86 |
-
# try:
|
87 |
-
# response = rag.ask(user_input)
|
88 |
-
# st.markdown("**Réponse :**")
|
89 |
-
# st.success(response)
|
90 |
-
# except Exception as e:
|
91 |
-
# st.error(f"Erreur pendant la génération: {e}")
|
92 |
-
# else:
|
93 |
-
# st.info("Saisissez une question.")
|
94 |
-
|
95 |
-
if col2.button("Envoyer (stream)"):
|
96 |
-
if user_input.strip():
|
97 |
-
with st.spinner("Génération en cours (stream)..."):
|
98 |
-
try:
|
99 |
-
ph = st.empty()
|
100 |
-
acc = ""
|
101 |
-
for token in rag.ask_stream(user_input):
|
102 |
-
acc += token
|
103 |
-
ph.markdown(acc)
|
104 |
-
st.balloons()
|
105 |
-
except Exception as e:
|
106 |
-
st.error(f"Erreur pendant la génération (stream): {e}")
|
107 |
-
else:
|
108 |
-
st.info("Saisissez une question.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rag_model_ollama_v1.py → rag_model_ollama.py
RENAMED
File without changes
|
sauve/app_old.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from llama_cpp import Llama
|
3 |
+
import os
|
4 |
+
from rag_model import RAGEngine
|
5 |
+
|
6 |
+
#from rag_model_optimise import RAGEngine
|
7 |
+
import logging
|
8 |
+
from huggingface_hub import hf_hub_download
|
9 |
+
import time
|
10 |
+
|
11 |
+
|
12 |
+
import os
|
13 |
+
os.environ["NLTK_DATA"] = "/home/appuser/nltk_data"
|
14 |
+
|
15 |
+
# Appliquer le patch avant tout import de llama_index
|
16 |
+
from patches.llama_patch import patch_llamaindex_nltk
|
17 |
+
patch_llamaindex_nltk()
|
18 |
+
|
19 |
+
logger = logging.getLogger("Streamlit")
|
20 |
+
logger.setLevel(logging.INFO)
|
21 |
+
handler = logging.StreamHandler()
|
22 |
+
formatter = logging.Formatter("[%(asctime)s] %(levelname)s - %(message)s")
|
23 |
+
handler.setFormatter(formatter)
|
24 |
+
logger.addHandler(handler)
|
25 |
+
|
26 |
+
|
27 |
+
ENV = os.getenv("ENV", "space")
|
28 |
+
logger.info(f"ENV :{ENV}")
|
29 |
+
|
30 |
+
#time.sleep(5)
|
31 |
+
|
32 |
+
if ENV == "local":
|
33 |
+
model_path = "chatbot-models/Nous-Hermes-2-Mistral-7B-DPO.Q4_K_M.gguf"
|
34 |
+
faiss_index_path="chatbot-models/vectordb_docling/index.faiss"
|
35 |
+
vectors_path="chatbot-models/vectordb_docling/chunks.pkl"
|
36 |
+
|
37 |
+
else:
|
38 |
+
# Télécharger le modèle GGUF
|
39 |
+
model_path = hf_hub_download(
|
40 |
+
repo_id="rkonan/chatbot-models",
|
41 |
+
filename="chatbot-models/Nous-Hermes-2-Mistral-7B-DPO.Q4_K_M.gguf",
|
42 |
+
repo_type="dataset"
|
43 |
+
)
|
44 |
+
|
45 |
+
# Télécharger les fichiers FAISS
|
46 |
+
faiss_index_path = hf_hub_download(
|
47 |
+
repo_id="rkonan/chatbot-models",
|
48 |
+
filename="chatbot-models/vectordb_docling/index.faiss",
|
49 |
+
repo_type="dataset"
|
50 |
+
)
|
51 |
+
|
52 |
+
vectors_path = hf_hub_download(
|
53 |
+
repo_id="rkonan/chatbot-models",
|
54 |
+
filename="chatbot-models/vectordb_docling/chunks.pkl",
|
55 |
+
repo_type="dataset"
|
56 |
+
)
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
st.set_page_config(page_title="Chatbot RAG local",page_icon="🤖")
|
62 |
+
|
63 |
+
|
64 |
+
|
65 |
+
|
66 |
+
|
67 |
+
@st.cache_resource
|
68 |
+
def load_rag_engine():
|
69 |
+
rag = RAGEngine(
|
70 |
+
model_path=model_path,
|
71 |
+
vector_path=vectors_path,
|
72 |
+
index_path=faiss_index_path,
|
73 |
+
model_threads=8 # ✅ plus rapide
|
74 |
+
)
|
75 |
+
|
76 |
+
# 🔥 Warmup pour éviter latence au 1er appel
|
77 |
+
rag.llm("Bonjour", max_tokens=1)
|
78 |
+
return rag
|
79 |
+
|
80 |
+
|
81 |
+
rag=load_rag_engine()
|
82 |
+
|
83 |
+
st.title("🤖 Chatbot LLM Local (CPU)")
|
84 |
+
|
85 |
+
user_input=st.text_area("Posez votre question :", height=100)
|
86 |
+
|
87 |
+
if st.button("Envoyer") and user_input.strip():
|
88 |
+
with st.spinner("Génération en cours..."):
|
89 |
+
response = rag.ask(user_input)
|
90 |
+
st.markdown("**Réponse :**")
|
91 |
+
st.success(response)
|
app_ollama_v1 copy 2.py → sauve/app_ollama_v1 copy 2.py
RENAMED
File without changes
|
app_ollama_v1 copy.py → sauve/app_ollama_v1 copy.py
RENAMED
File without changes
|
app_ollama_v1_chat.py → sauve/app_ollama_v1_chat.py
RENAMED
File without changes
|
log_app.txt → sauve/log_app.txt
RENAMED
File without changes
|
log_cli.txt → sauve/log_cli.txt
RENAMED
File without changes
|
logs → sauve/logs
RENAMED
File without changes
|
rag_model.py → sauve/rag_model.py
RENAMED
File without changes
|
rag_model_ollama_v1 copy 2.py → sauve/rag_model_ollama_v1 copy 2.py
RENAMED
File without changes
|
rag_model_ollama_v1 copy.py → sauve/rag_model_ollama_v1 copy.py
RENAMED
File without changes
|
rag_model_ollama_v1 stable_lazy.py → sauve/rag_model_ollama_v1 stable_lazy.py
RENAMED
File without changes
|
rag_model_ollama_v1_ok_full_load.py → sauve/rag_model_ollama_v1_ok_full_load.py
RENAMED
File without changes
|
rag_model_ollama_v1_ok_llm.py → sauve/rag_model_ollama_v1_ok_llm.py
RENAMED
File without changes
|
rag_model_ollama_v2.py → sauve/rag_model_ollama_v2.py
RENAMED
File without changes
|
rag_model_optimise.py → sauve/rag_model_optimise.py
RENAMED
File without changes
|
requirements-base.txt → sauve/requirements-base.txt
RENAMED
File without changes
|
requirements._extendedtxt → sauve/requirements._extendedtxt
RENAMED
File without changes
|
step1_read_pdf.py → sauve/step1_read_pdf.py
RENAMED
File without changes
|
step2_chunk.py → sauve/step2_chunk.py
RENAMED
File without changes
|
step3_embed.py → sauve/step3_embed.py
RENAMED
File without changes
|
step3_llamaindex.py → sauve/step3_llamaindex.py
RENAMED
File without changes
|
step3_llamaindex_evol.py → sauve/step3_llamaindex_evol.py
RENAMED
File without changes
|
step4_faiss.py → sauve/step4_faiss.py
RENAMED
File without changes
|
step4b_shell.py → sauve/step4b_shell.py
RENAMED
File without changes
|
tester.py → sauve/tester.py
RENAMED
File without changes
|