Spaces:
Configuration error
Configuration error
| #!/usr/bin/env python | |
| # -*- encoding: utf-8 -*- | |
| """ | |
| @Author : Peike Li | |
| @Contact : [email protected] | |
| @File : AugmentCE2P.py | |
| @Time : 8/4/19 3:35 PM | |
| @Desc : | |
| @License : This source code is licensed under the license found in the | |
| LICENSE file in the root directory of this source tree. | |
| """ | |
| import functools | |
| import pdb | |
| import torch | |
| import torch.nn as nn | |
| from torch.nn import functional as F | |
| # Note here we adopt the InplaceABNSync implementation from https://github.com/mapillary/inplace_abn | |
| # By default, the InplaceABNSync module contains a BatchNorm Layer and a LeakyReLu layer | |
| from modules import InPlaceABNSync | |
| import numpy as np | |
| BatchNorm2d = functools.partial(InPlaceABNSync, activation='none') | |
| affine_par = True | |
| pretrained_settings = { | |
| 'resnet101': { | |
| 'imagenet': { | |
| 'input_space': 'BGR', | |
| 'input_size': [3, 224, 224], | |
| 'input_range': [0, 1], | |
| 'mean': [0.406, 0.456, 0.485], | |
| 'std': [0.225, 0.224, 0.229], | |
| 'num_classes': 1000 | |
| } | |
| }, | |
| } | |
| def conv3x3(in_planes, out_planes, stride=1): | |
| "3x3 convolution with padding" | |
| return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, | |
| padding=1, bias=False) | |
| class Bottleneck(nn.Module): | |
| expansion = 4 | |
| def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None, fist_dilation=1, multi_grid=1): | |
| super(Bottleneck, self).__init__() | |
| self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) | |
| self.bn1 = BatchNorm2d(planes) | |
| self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, | |
| padding=dilation * multi_grid, dilation=dilation * multi_grid, bias=False) | |
| self.bn2 = BatchNorm2d(planes) | |
| self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) | |
| self.bn3 = BatchNorm2d(planes * 4) | |
| self.relu = nn.ReLU(inplace=False) | |
| self.relu_inplace = nn.ReLU(inplace=True) | |
| self.downsample = downsample | |
| self.dilation = dilation | |
| self.stride = stride | |
| def forward(self, x): | |
| residual = x | |
| out = self.conv1(x) | |
| out = self.bn1(out) | |
| out = self.relu(out) | |
| out = self.conv2(out) | |
| out = self.bn2(out) | |
| out = self.relu(out) | |
| out = self.conv3(out) | |
| out = self.bn3(out) | |
| if self.downsample is not None: | |
| residual = self.downsample(x) | |
| out = out + residual | |
| out = self.relu_inplace(out) | |
| return out | |
| class CostomAdaptiveAvgPool2D(nn.Module): | |
| def __init__(self, output_size): | |
| super(CostomAdaptiveAvgPool2D, self).__init__() | |
| self.output_size = output_size | |
| def forward(self, x): | |
| H_in, W_in = x.shape[-2:] | |
| H_out, W_out = self.output_size | |
| out_i = [] | |
| for i in range(H_out): | |
| out_j = [] | |
| for j in range(W_out): | |
| hs = int(np.floor(i * H_in / H_out)) | |
| he = int(np.ceil((i + 1) * H_in / H_out)) | |
| ws = int(np.floor(j * W_in / W_out)) | |
| we = int(np.ceil((j + 1) * W_in / W_out)) | |
| # print(hs, he, ws, we) | |
| kernel_size = [he - hs, we - ws] | |
| out = F.avg_pool2d(x[:, :, hs:he, ws:we], kernel_size) | |
| out_j.append(out) | |
| out_j = torch.concat(out_j, -1) | |
| out_i.append(out_j) | |
| out_i = torch.concat(out_i, -2) | |
| return out_i | |
| class PSPModule(nn.Module): | |
| """ | |
| Reference: | |
| Zhao, Hengshuang, et al. *"Pyramid scene parsing network."* | |
| """ | |
| def __init__(self, features, out_features=512, sizes=(1, 2, 3, 6)): | |
| super(PSPModule, self).__init__() | |
| self.stages = [] | |
| tmp = [] | |
| for size in sizes: | |
| if size == 3 or size == 6: | |
| tmp.append(self._make_stage_custom(features, out_features, size)) | |
| else: | |
| tmp.append(self._make_stage(features, out_features, size)) | |
| self.stages = nn.ModuleList(tmp) | |
| # self.stages = nn.ModuleList([self._make_stage(features, out_features, size) for size in sizes]) | |
| self.bottleneck = nn.Sequential( | |
| nn.Conv2d(features + len(sizes) * out_features, out_features, kernel_size=3, padding=1, dilation=1, | |
| bias=False), | |
| InPlaceABNSync(out_features), | |
| ) | |
| def _make_stage(self, features, out_features, size): | |
| prior = nn.AdaptiveAvgPool2d(output_size=(size, size)) | |
| conv = nn.Conv2d(features, out_features, kernel_size=1, bias=False) | |
| bn = InPlaceABNSync(out_features) | |
| return nn.Sequential(prior, conv, bn) | |
| def _make_stage_custom(self, features, out_features, size): | |
| prior = CostomAdaptiveAvgPool2D(output_size=(size, size)) | |
| conv = nn.Conv2d(features, out_features, kernel_size=1, bias=False) | |
| bn = InPlaceABNSync(out_features) | |
| return nn.Sequential(prior, conv, bn) | |
| def forward(self, feats): | |
| h, w = feats.size(2), feats.size(3) | |
| priors = [F.interpolate(input=stage(feats), size=(h, w), mode='bilinear', align_corners=True) for stage in | |
| self.stages] + [feats] | |
| bottle = self.bottleneck(torch.cat(priors, 1)) | |
| return bottle | |
| class ASPPModule(nn.Module): | |
| """ | |
| Reference: | |
| Chen, Liang-Chieh, et al. *"Rethinking Atrous Convolution for Semantic Image Segmentation."* | |
| """ | |
| def __init__(self, features, inner_features=256, out_features=512, dilations=(12, 24, 36)): | |
| super(ASPPModule, self).__init__() | |
| self.conv1 = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)), | |
| nn.Conv2d(features, inner_features, kernel_size=1, padding=0, dilation=1, | |
| bias=False), | |
| InPlaceABNSync(inner_features)) | |
| self.conv2 = nn.Sequential( | |
| nn.Conv2d(features, inner_features, kernel_size=1, padding=0, dilation=1, bias=False), | |
| InPlaceABNSync(inner_features)) | |
| self.conv3 = nn.Sequential( | |
| nn.Conv2d(features, inner_features, kernel_size=3, padding=dilations[0], dilation=dilations[0], bias=False), | |
| InPlaceABNSync(inner_features)) | |
| self.conv4 = nn.Sequential( | |
| nn.Conv2d(features, inner_features, kernel_size=3, padding=dilations[1], dilation=dilations[1], bias=False), | |
| InPlaceABNSync(inner_features)) | |
| self.conv5 = nn.Sequential( | |
| nn.Conv2d(features, inner_features, kernel_size=3, padding=dilations[2], dilation=dilations[2], bias=False), | |
| InPlaceABNSync(inner_features)) | |
| self.bottleneck = nn.Sequential( | |
| nn.Conv2d(inner_features * 5, out_features, kernel_size=1, padding=0, dilation=1, bias=False), | |
| InPlaceABNSync(out_features), | |
| nn.Dropout2d(0.1) | |
| ) | |
| def forward(self, x): | |
| _, _, h, w = x.size() | |
| feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True) | |
| feat2 = self.conv2(x) | |
| feat3 = self.conv3(x) | |
| feat4 = self.conv4(x) | |
| feat5 = self.conv5(x) | |
| out = torch.cat((feat1, feat2, feat3, feat4, feat5), 1) | |
| bottle = self.bottleneck(out) | |
| return bottle | |
| class Edge_Module(nn.Module): | |
| """ | |
| Edge Learning Branch | |
| """ | |
| def __init__(self, in_fea=[256, 512, 1024], mid_fea=256, out_fea=2): | |
| super(Edge_Module, self).__init__() | |
| self.conv1 = nn.Sequential( | |
| nn.Conv2d(in_fea[0], mid_fea, kernel_size=1, padding=0, dilation=1, bias=False), | |
| InPlaceABNSync(mid_fea) | |
| ) | |
| self.conv2 = nn.Sequential( | |
| nn.Conv2d(in_fea[1], mid_fea, kernel_size=1, padding=0, dilation=1, bias=False), | |
| InPlaceABNSync(mid_fea) | |
| ) | |
| self.conv3 = nn.Sequential( | |
| nn.Conv2d(in_fea[2], mid_fea, kernel_size=1, padding=0, dilation=1, bias=False), | |
| InPlaceABNSync(mid_fea) | |
| ) | |
| self.conv4 = nn.Conv2d(mid_fea, out_fea, kernel_size=3, padding=1, dilation=1, bias=True) | |
| self.conv5 = nn.Conv2d(out_fea * 3, out_fea, kernel_size=1, padding=0, dilation=1, bias=True) | |
| def forward(self, x1, x2, x3): | |
| _, _, h, w = x1.size() | |
| edge1_fea = self.conv1(x1) | |
| edge1 = self.conv4(edge1_fea) | |
| edge2_fea = self.conv2(x2) | |
| edge2 = self.conv4(edge2_fea) | |
| edge3_fea = self.conv3(x3) | |
| edge3 = self.conv4(edge3_fea) | |
| edge2_fea = F.interpolate(edge2_fea, size=(h, w), mode='bilinear', align_corners=True) | |
| edge3_fea = F.interpolate(edge3_fea, size=(h, w), mode='bilinear', align_corners=True) | |
| edge2 = F.interpolate(edge2, size=(h, w), mode='bilinear', align_corners=True) | |
| edge3 = F.interpolate(edge3, size=(h, w), mode='bilinear', align_corners=True) | |
| edge = torch.cat([edge1, edge2, edge3], dim=1) | |
| edge_fea = torch.cat([edge1_fea, edge2_fea, edge3_fea], dim=1) | |
| edge = self.conv5(edge) | |
| return edge, edge_fea | |
| class Decoder_Module(nn.Module): | |
| """ | |
| Parsing Branch Decoder Module. | |
| """ | |
| def __init__(self, num_classes): | |
| super(Decoder_Module, self).__init__() | |
| self.conv1 = nn.Sequential( | |
| nn.Conv2d(512, 256, kernel_size=1, padding=0, dilation=1, bias=False), | |
| InPlaceABNSync(256) | |
| ) | |
| self.conv2 = nn.Sequential( | |
| nn.Conv2d(256, 48, kernel_size=1, stride=1, padding=0, dilation=1, bias=False), | |
| InPlaceABNSync(48) | |
| ) | |
| self.conv3 = nn.Sequential( | |
| nn.Conv2d(304, 256, kernel_size=1, padding=0, dilation=1, bias=False), | |
| InPlaceABNSync(256), | |
| nn.Conv2d(256, 256, kernel_size=1, padding=0, dilation=1, bias=False), | |
| InPlaceABNSync(256) | |
| ) | |
| self.conv4 = nn.Conv2d(256, num_classes, kernel_size=1, padding=0, dilation=1, bias=True) | |
| def forward(self, xt, xl): | |
| _, _, h, w = xl.size() | |
| xt = F.interpolate(self.conv1(xt), size=(h, w), mode='bilinear', align_corners=True) | |
| xl = self.conv2(xl) | |
| x = torch.cat([xt, xl], dim=1) | |
| x = self.conv3(x) | |
| seg = self.conv4(x) | |
| return seg, x | |
| class ResNet(nn.Module): | |
| def __init__(self, block, layers, num_classes): | |
| self.inplanes = 128 | |
| super(ResNet, self).__init__() | |
| self.conv1 = conv3x3(3, 64, stride=2) | |
| self.bn1 = BatchNorm2d(64) | |
| self.relu1 = nn.ReLU(inplace=False) | |
| self.conv2 = conv3x3(64, 64) | |
| self.bn2 = BatchNorm2d(64) | |
| self.relu2 = nn.ReLU(inplace=False) | |
| self.conv3 = conv3x3(64, 128) | |
| self.bn3 = BatchNorm2d(128) | |
| self.relu3 = nn.ReLU(inplace=False) | |
| self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
| self.layer1 = self._make_layer(block, 64, layers[0]) | |
| self.layer2 = self._make_layer(block, 128, layers[1], stride=2) | |
| self.layer3 = self._make_layer(block, 256, layers[2], stride=2) | |
| self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=2, multi_grid=(1, 1, 1)) | |
| self.context_encoding = PSPModule(2048, 512) | |
| self.edge = Edge_Module() | |
| self.decoder = Decoder_Module(num_classes) | |
| self.fushion = nn.Sequential( | |
| nn.Conv2d(1024, 256, kernel_size=1, padding=0, dilation=1, bias=False), | |
| InPlaceABNSync(256), | |
| nn.Dropout2d(0.1), | |
| nn.Conv2d(256, num_classes, kernel_size=1, padding=0, dilation=1, bias=True) | |
| ) | |
| def _make_layer(self, block, planes, blocks, stride=1, dilation=1, multi_grid=1): | |
| downsample = None | |
| if stride != 1 or self.inplanes != planes * block.expansion: | |
| downsample = nn.Sequential( | |
| nn.Conv2d(self.inplanes, planes * block.expansion, | |
| kernel_size=1, stride=stride, bias=False), | |
| BatchNorm2d(planes * block.expansion, affine=affine_par)) | |
| layers = [] | |
| generate_multi_grid = lambda index, grids: grids[index % len(grids)] if isinstance(grids, tuple) else 1 | |
| layers.append(block(self.inplanes, planes, stride, dilation=dilation, downsample=downsample, | |
| multi_grid=generate_multi_grid(0, multi_grid))) | |
| self.inplanes = planes * block.expansion | |
| for i in range(1, blocks): | |
| layers.append( | |
| block(self.inplanes, planes, dilation=dilation, multi_grid=generate_multi_grid(i, multi_grid))) | |
| return nn.Sequential(*layers) | |
| def forward(self, x): | |
| x = self.relu1(self.bn1(self.conv1(x))) | |
| x = self.relu2(self.bn2(self.conv2(x))) | |
| x = self.relu3(self.bn3(self.conv3(x))) | |
| x = self.maxpool(x) | |
| x2 = self.layer1(x) | |
| x3 = self.layer2(x2) | |
| x4 = self.layer3(x3) | |
| x5 = self.layer4(x4) | |
| x = self.context_encoding(x5) | |
| parsing_result, parsing_fea = self.decoder(x, x2) | |
| # Edge Branch | |
| edge_result, edge_fea = self.edge(x2, x3, x4) | |
| # Fusion Branch | |
| x = torch.cat([parsing_fea, edge_fea], dim=1) | |
| fusion_result = self.fushion(x) | |
| return [[parsing_result, fusion_result], edge_result] | |
| def initialize_pretrained_model(model, settings, pretrained='./models/resnet101-imagenet.pth'): | |
| model.input_space = settings['input_space'] | |
| model.input_size = settings['input_size'] | |
| model.input_range = settings['input_range'] | |
| model.mean = settings['mean'] | |
| model.std = settings['std'] | |
| if pretrained is not None: | |
| saved_state_dict = torch.load(pretrained) | |
| new_params = model.state_dict().copy() | |
| for i in saved_state_dict: | |
| i_parts = i.split('.') | |
| if not i_parts[0] == 'fc': | |
| new_params['.'.join(i_parts[0:])] = saved_state_dict[i] | |
| model.load_state_dict(new_params) | |
| def resnet101(num_classes=20, pretrained='./models/resnet101-imagenet.pth'): | |
| model = ResNet(Bottleneck, [3, 4, 23, 3], num_classes) | |
| settings = pretrained_settings['resnet101']['imagenet'] | |
| initialize_pretrained_model(model, settings, pretrained) | |
| return model | |