Spaces:
Runtime error
Runtime error
Commit
·
7731d94
1
Parent(s):
bdd4371
go13
Browse files- app.py +304 -144
- requirements.txt +2 -1
app.py
CHANGED
@@ -7,145 +7,275 @@ import torch.optim as optim
|
|
7 |
from torchvision import datasets, transforms, models
|
8 |
from torch.utils.data import DataLoader, random_split
|
9 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
import tempfile
|
11 |
import warnings
|
12 |
warnings.filterwarnings("ignore")
|
13 |
|
14 |
-
|
15 |
-
model = None
|
16 |
-
train_loader = None
|
17 |
-
test_loader = None
|
18 |
-
dataset_path = None
|
19 |
-
class_names = ["classe_0", "classe_1"]
|
20 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
for i in range(2):
|
29 |
-
os.makedirs(os.path.join(dataset_path, f"classe_{i}"), exist_ok=True)
|
30 |
-
|
31 |
-
return f"✅ Dataset criado em: {dataset_path}"
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
if image is None:
|
39 |
-
return "❌ Selecione uma imagem"
|
40 |
|
|
|
|
|
|
|
|
|
|
|
41 |
try:
|
42 |
-
|
|
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
filename = f"img_{int(time.time())}.jpg"
|
47 |
-
filepath = os.path.join(class_dir, filename)
|
48 |
-
image.save(filepath)
|
49 |
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
except Exception as e:
|
52 |
return f"❌ Erro: {str(e)}"
|
53 |
|
54 |
-
def
|
55 |
-
"""
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
58 |
try:
|
59 |
-
if dataset_path
|
60 |
-
return "❌
|
61 |
|
62 |
-
# Transformações
|
63 |
transform = transforms.Compose([
|
64 |
transforms.Resize((224, 224)),
|
65 |
transforms.ToTensor(),
|
66 |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
67 |
])
|
68 |
|
69 |
-
|
70 |
-
dataset = datasets.ImageFolder(dataset_path, transform=transform)
|
71 |
|
72 |
-
if len(dataset) <
|
73 |
-
return f"❌ Poucas imagens ({len(dataset)}).
|
74 |
|
75 |
-
#
|
76 |
train_size = int(0.7 * len(dataset))
|
77 |
-
|
|
|
78 |
|
79 |
-
train_dataset, test_dataset = random_split(
|
|
|
|
|
|
|
80 |
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
# Carregar modelo
|
85 |
-
model =
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
model
|
|
|
|
|
91 |
|
92 |
-
|
93 |
criterion = nn.CrossEntropyLoss()
|
94 |
-
optimizer = optim.Adam(model.parameters(), lr=
|
95 |
|
96 |
-
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
inputs, labels = inputs.to(device), labels.to(device)
|
100 |
|
101 |
optimizer.zero_grad()
|
102 |
-
outputs = model(inputs)
|
103 |
loss = criterion(outputs, labels)
|
104 |
loss.backward()
|
105 |
optimizer.step()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
-
|
108 |
-
|
109 |
except Exception as e:
|
110 |
return f"❌ Erro: {str(e)}"
|
111 |
|
112 |
def evaluate_model():
|
113 |
-
"""Avalia modelo"""
|
114 |
-
global model, test_loader
|
115 |
-
|
116 |
-
if model is None or test_loader is None:
|
117 |
-
return "❌ Treine o modelo primeiro"
|
118 |
-
|
119 |
try:
|
120 |
-
model.
|
121 |
-
|
122 |
-
|
|
|
|
|
|
|
123 |
|
124 |
with torch.no_grad():
|
125 |
-
for inputs, labels in test_loader:
|
126 |
inputs, labels = inputs.to(device), labels.to(device)
|
127 |
-
outputs = model(inputs)
|
128 |
-
_,
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
accuracy = 100 * correct / total if total > 0 else 0
|
133 |
-
return f"📊 Acurácia: {accuracy:.2f}% ({correct}/{total})"
|
134 |
|
|
|
|
|
135 |
except Exception as e:
|
136 |
return f"❌ Erro: {str(e)}"
|
137 |
|
138 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
"""Prediz uma única imagem"""
|
140 |
-
global model
|
141 |
-
|
142 |
-
if model is None:
|
143 |
-
return "❌ Treine o modelo primeiro"
|
144 |
-
|
145 |
-
if image is None:
|
146 |
-
return "❌ Selecione uma imagem"
|
147 |
-
|
148 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
transform = transforms.Compose([
|
150 |
transforms.Resize((224, 224)),
|
151 |
transforms.ToTensor(),
|
@@ -154,76 +284,106 @@ def predict_single_image(image):
|
|
154 |
|
155 |
img_tensor = transform(image).unsqueeze(0).to(device)
|
156 |
|
157 |
-
model.eval()
|
158 |
with torch.no_grad():
|
159 |
-
outputs = model(img_tensor)
|
160 |
probs = torch.nn.functional.softmax(outputs[0], dim=0)
|
161 |
_, predicted = torch.max(outputs, 1)
|
162 |
|
163 |
class_id = predicted.item()
|
164 |
confidence = probs[class_id].item() * 100
|
165 |
-
class_name =
|
166 |
|
167 |
return f"🎯 Predição: {class_name}\n📊 Confiança: {confidence:.2f}%"
|
168 |
-
|
169 |
except Exception as e:
|
170 |
return f"❌ Erro: {str(e)}"
|
171 |
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
gr.Markdown("# 🖼️ Classificador de Imagens Simples")
|
186 |
-
|
187 |
-
with gr.Row():
|
188 |
-
with gr.Column():
|
189 |
-
gr.Markdown("### 1️⃣ Configurar Classes")
|
190 |
-
class_0_name = gr.Textbox(label="Nome Classe 0", value="gato")
|
191 |
-
class_1_name = gr.Textbox(label="Nome Classe 1", value="cachorro")
|
192 |
-
set_names_btn = gr.Button("🏷️ Definir Nomes")
|
193 |
-
names_status = gr.Textbox(label="Status")
|
194 |
|
195 |
-
gr.
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
211 |
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
demo.launch()
|
|
|
7 |
from torchvision import datasets, transforms, models
|
8 |
from torch.utils.data import DataLoader, random_split
|
9 |
from PIL import Image
|
10 |
+
import matplotlib
|
11 |
+
matplotlib.use('Agg')
|
12 |
+
import matplotlib.pyplot as plt
|
13 |
+
import seaborn as sns
|
14 |
+
import numpy as np
|
15 |
+
from sklearn.metrics import classification_report, confusion_matrix
|
16 |
import tempfile
|
17 |
import warnings
|
18 |
warnings.filterwarnings("ignore")
|
19 |
|
20 |
+
print("🖥️ Iniciando sistema...")
|
|
|
|
|
|
|
|
|
|
|
21 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
22 |
+
print(f"Device: {device}")
|
23 |
|
24 |
+
# Modelos disponíveis
|
25 |
+
MODELS = {
|
26 |
+
'ResNet18': models.resnet18,
|
27 |
+
'ResNet34': models.resnet34,
|
28 |
+
'MobileNetV2': models.mobilenet_v2
|
29 |
+
}
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
# Estado global
|
32 |
+
class AppState:
|
33 |
+
def __init__(self):
|
34 |
+
self.model = None
|
35 |
+
self.train_loader = None
|
36 |
+
self.val_loader = None
|
37 |
+
self.test_loader = None
|
38 |
+
self.dataset_path = None
|
39 |
+
self.class_dirs = []
|
40 |
+
self.class_labels = ['classe_0', 'classe_1']
|
41 |
+
self.num_classes = 2
|
42 |
+
self.image_queue = [] # Para armazenar imagens uploaded
|
43 |
+
|
44 |
+
state = AppState()
|
45 |
+
|
46 |
+
def setup_classes(num_classes_value):
|
47 |
+
"""Configura número de classes"""
|
48 |
+
try:
|
49 |
+
state.num_classes = int(num_classes_value)
|
50 |
+
state.dataset_path = tempfile.mkdtemp()
|
51 |
+
state.class_labels = [f'classe_{i}' for i in range(state.num_classes)]
|
52 |
+
|
53 |
+
# Criar diretórios
|
54 |
+
state.class_dirs = []
|
55 |
+
for i in range(state.num_classes):
|
56 |
+
class_dir = os.path.join(state.dataset_path, f'classe_{i}')
|
57 |
+
os.makedirs(class_dir, exist_ok=True)
|
58 |
+
state.class_dirs.append(class_dir)
|
59 |
+
|
60 |
+
return f"✅ Sistema configurado para {state.num_classes} classes"
|
61 |
+
except Exception as e:
|
62 |
+
return f"❌ Erro: {str(e)}"
|
63 |
+
|
64 |
+
def set_class_labels(labels_text):
|
65 |
+
"""Define rótulos das classes"""
|
66 |
+
try:
|
67 |
+
labels = [label.strip() for label in labels_text.split(',')]
|
68 |
+
if len(labels) != state.num_classes:
|
69 |
+
return f"❌ Forneça {state.num_classes} rótulos separados por vírgula"
|
70 |
+
|
71 |
+
state.class_labels = labels
|
72 |
+
return f"✅ Rótulos definidos: {', '.join(state.class_labels)}"
|
73 |
+
except Exception as e:
|
74 |
+
return f"❌ Erro: {str(e)}"
|
75 |
+
|
76 |
+
def add_image_to_queue(image):
|
77 |
+
"""Adiciona imagem à fila"""
|
78 |
if image is None:
|
79 |
+
return "❌ Selecione uma imagem", 0
|
80 |
|
81 |
+
state.image_queue.append(image)
|
82 |
+
return f"✅ Imagem adicionada à fila. Total: {len(state.image_queue)}", len(state.image_queue)
|
83 |
+
|
84 |
+
def save_images_to_class(class_id, clear_queue=True):
|
85 |
+
"""Salva todas as imagens da fila para uma classe"""
|
86 |
try:
|
87 |
+
if not state.image_queue:
|
88 |
+
return "❌ Nenhuma imagem na fila"
|
89 |
|
90 |
+
if not state.class_dirs:
|
91 |
+
return "❌ Configure as classes primeiro"
|
|
|
|
|
|
|
92 |
|
93 |
+
class_idx = int(class_id)
|
94 |
+
if class_idx >= len(state.class_dirs):
|
95 |
+
return "❌ Classe inválida"
|
96 |
+
|
97 |
+
class_dir = state.class_dirs[class_idx]
|
98 |
+
count = 0
|
99 |
+
|
100 |
+
for i, image in enumerate(state.image_queue):
|
101 |
+
try:
|
102 |
+
import time
|
103 |
+
filename = f"img_{int(time.time())}_{i}.jpg"
|
104 |
+
filepath = os.path.join(class_dir, filename)
|
105 |
+
image.save(filepath)
|
106 |
+
count += 1
|
107 |
+
except Exception as e:
|
108 |
+
print(f"Erro salvando imagem {i}: {e}")
|
109 |
+
|
110 |
+
if clear_queue:
|
111 |
+
state.image_queue = []
|
112 |
+
|
113 |
+
class_name = state.class_labels[class_idx]
|
114 |
+
return f"✅ {count} imagens salvas em '{class_name}'"
|
115 |
except Exception as e:
|
116 |
return f"❌ Erro: {str(e)}"
|
117 |
|
118 |
+
def clear_image_queue():
|
119 |
+
"""Limpa a fila de imagens"""
|
120 |
+
state.image_queue = []
|
121 |
+
return "✅ Fila limpa", 0
|
122 |
+
|
123 |
+
def prepare_data(batch_size):
|
124 |
+
"""Prepara dados para treinamento"""
|
125 |
try:
|
126 |
+
if not state.dataset_path:
|
127 |
+
return "❌ Configure as classes primeiro"
|
128 |
|
|
|
129 |
transform = transforms.Compose([
|
130 |
transforms.Resize((224, 224)),
|
131 |
transforms.ToTensor(),
|
132 |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
133 |
])
|
134 |
|
135 |
+
dataset = datasets.ImageFolder(state.dataset_path, transform=transform)
|
|
|
136 |
|
137 |
+
if len(dataset) < 6:
|
138 |
+
return f"❌ Poucas imagens ({len(dataset)}). Mínimo: 6"
|
139 |
|
140 |
+
# Divisão: 70% treino, 20% val, 10% teste
|
141 |
train_size = int(0.7 * len(dataset))
|
142 |
+
val_size = int(0.2 * len(dataset))
|
143 |
+
test_size = len(dataset) - train_size - val_size
|
144 |
|
145 |
+
train_dataset, val_dataset, test_dataset = random_split(
|
146 |
+
dataset, [train_size, val_size, test_size],
|
147 |
+
generator=torch.Generator().manual_seed(42)
|
148 |
+
)
|
149 |
|
150 |
+
batch_size = max(1, min(int(batch_size), 32))
|
151 |
+
state.train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
|
152 |
+
state.val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
|
153 |
+
state.test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
|
154 |
+
|
155 |
+
return f"✅ Dados preparados:\n• Treino: {train_size}\n• Validação: {val_size}\n• Teste: {test_size}\n• Batch size: {batch_size}"
|
156 |
+
except Exception as e:
|
157 |
+
return f"❌ Erro: {str(e)}"
|
158 |
+
|
159 |
+
def train_model(model_name, epochs, lr):
|
160 |
+
"""Treina o modelo"""
|
161 |
+
try:
|
162 |
+
if state.train_loader is None:
|
163 |
+
return "❌ Prepare os dados primeiro"
|
164 |
|
165 |
# Carregar modelo
|
166 |
+
state.model = MODELS[model_name](pretrained=True)
|
167 |
+
|
168 |
+
# Adaptar última camada
|
169 |
+
if hasattr(state.model, 'fc'):
|
170 |
+
state.model.fc = nn.Linear(state.model.fc.in_features, state.num_classes)
|
171 |
+
elif hasattr(state.model, 'classifier'):
|
172 |
+
if isinstance(state.model.classifier, nn.Sequential):
|
173 |
+
state.model.classifier[-1] = nn.Linear(state.model.classifier[-1].in_features, state.num_classes)
|
174 |
|
175 |
+
state.model = state.model.to(device)
|
176 |
criterion = nn.CrossEntropyLoss()
|
177 |
+
optimizer = optim.Adam(state.model.parameters(), lr=float(lr))
|
178 |
|
179 |
+
results = [f"🚀 Treinando {model_name}"]
|
180 |
+
state.model.train()
|
181 |
+
|
182 |
+
for epoch in range(int(epochs)):
|
183 |
+
running_loss = 0.0
|
184 |
+
correct = 0
|
185 |
+
total = 0
|
186 |
+
|
187 |
+
for inputs, labels in state.train_loader:
|
188 |
inputs, labels = inputs.to(device), labels.to(device)
|
189 |
|
190 |
optimizer.zero_grad()
|
191 |
+
outputs = state.model(inputs)
|
192 |
loss = criterion(outputs, labels)
|
193 |
loss.backward()
|
194 |
optimizer.step()
|
195 |
+
|
196 |
+
running_loss += loss.item()
|
197 |
+
_, predicted = torch.max(outputs, 1)
|
198 |
+
total += labels.size(0)
|
199 |
+
correct += (predicted == labels).sum().item()
|
200 |
+
|
201 |
+
epoch_loss = running_loss / len(state.train_loader)
|
202 |
+
epoch_acc = 100. * correct / total
|
203 |
+
results.append(f"Época {epoch+1}: Loss={epoch_loss:.4f}, Acc={epoch_acc:.2f}%")
|
204 |
|
205 |
+
results.append("✅ Treinamento concluído!")
|
206 |
+
return "\n".join(results)
|
207 |
except Exception as e:
|
208 |
return f"❌ Erro: {str(e)}"
|
209 |
|
210 |
def evaluate_model():
|
211 |
+
"""Avalia o modelo"""
|
|
|
|
|
|
|
|
|
|
|
212 |
try:
|
213 |
+
if state.model is None or state.test_loader is None:
|
214 |
+
return "❌ Modelo/dados não disponíveis"
|
215 |
+
|
216 |
+
state.model.eval()
|
217 |
+
all_preds = []
|
218 |
+
all_labels = []
|
219 |
|
220 |
with torch.no_grad():
|
221 |
+
for inputs, labels in state.test_loader:
|
222 |
inputs, labels = inputs.to(device), labels.to(device)
|
223 |
+
outputs = state.model(inputs)
|
224 |
+
_, preds = torch.max(outputs, 1)
|
225 |
+
all_preds.extend(preds.cpu().numpy())
|
226 |
+
all_labels.extend(labels.cpu().numpy())
|
|
|
|
|
|
|
227 |
|
228 |
+
report = classification_report(all_labels, all_preds, target_names=state.class_labels, zero_division=0)
|
229 |
+
return f"📊 RELATÓRIO DE AVALIAÇÃO:\n\n{report}"
|
230 |
except Exception as e:
|
231 |
return f"❌ Erro: {str(e)}"
|
232 |
|
233 |
+
def generate_confusion_matrix():
|
234 |
+
"""Gera matriz de confusão"""
|
235 |
+
try:
|
236 |
+
if state.model is None or state.test_loader is None:
|
237 |
+
return None
|
238 |
+
|
239 |
+
state.model.eval()
|
240 |
+
all_preds = []
|
241 |
+
all_labels = []
|
242 |
+
|
243 |
+
with torch.no_grad():
|
244 |
+
for inputs, labels in state.test_loader:
|
245 |
+
inputs, labels = inputs.to(device), labels.to(device)
|
246 |
+
outputs = state.model(inputs)
|
247 |
+
_, preds = torch.max(outputs, 1)
|
248 |
+
all_preds.extend(preds.cpu().numpy())
|
249 |
+
all_labels.extend(labels.cpu().numpy())
|
250 |
+
|
251 |
+
cm = confusion_matrix(all_labels, all_preds)
|
252 |
+
|
253 |
+
plt.figure(figsize=(8, 6))
|
254 |
+
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues",
|
255 |
+
xticklabels=state.class_labels,
|
256 |
+
yticklabels=state.class_labels)
|
257 |
+
plt.xlabel('Predições')
|
258 |
+
plt.ylabel('Valores Reais')
|
259 |
+
plt.title('Matriz de Confusão')
|
260 |
+
plt.tight_layout()
|
261 |
+
|
262 |
+
temp_path = tempfile.NamedTemporaryFile(suffix='.png', delete=False).name
|
263 |
+
plt.savefig(temp_path, dpi=150, bbox_inches='tight')
|
264 |
+
plt.close()
|
265 |
+
|
266 |
+
return temp_path
|
267 |
+
except Exception as e:
|
268 |
+
return None
|
269 |
+
|
270 |
+
def predict_image(image):
|
271 |
"""Prediz uma única imagem"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
272 |
try:
|
273 |
+
if state.model is None:
|
274 |
+
return "❌ Treine o modelo primeiro"
|
275 |
+
|
276 |
+
if image is None:
|
277 |
+
return "❌ Selecione uma imagem"
|
278 |
+
|
279 |
transform = transforms.Compose([
|
280 |
transforms.Resize((224, 224)),
|
281 |
transforms.ToTensor(),
|
|
|
284 |
|
285 |
img_tensor = transform(image).unsqueeze(0).to(device)
|
286 |
|
287 |
+
state.model.eval()
|
288 |
with torch.no_grad():
|
289 |
+
outputs = state.model(img_tensor)
|
290 |
probs = torch.nn.functional.softmax(outputs[0], dim=0)
|
291 |
_, predicted = torch.max(outputs, 1)
|
292 |
|
293 |
class_id = predicted.item()
|
294 |
confidence = probs[class_id].item() * 100
|
295 |
+
class_name = state.class_labels[class_id]
|
296 |
|
297 |
return f"🎯 Predição: {class_name}\n📊 Confiança: {confidence:.2f}%"
|
|
|
298 |
except Exception as e:
|
299 |
return f"❌ Erro: {str(e)}"
|
300 |
|
301 |
+
# Interface usando componentes mais antigos/estáveis
|
302 |
+
def create_interface():
|
303 |
+
with gr.Blocks(title="🖼️ Classificador Completo") as demo:
|
304 |
+
|
305 |
+
gr.Markdown("# 🖼️ Sistema de Classificação de Imagens Completo")
|
306 |
+
|
307 |
+
# Configuração
|
308 |
+
with gr.Group():
|
309 |
+
gr.Markdown("## 1️⃣ Configuração")
|
310 |
+
with gr.Row():
|
311 |
+
num_classes = gr.Number(label="Número de Classes (2-5)", value=2, precision=0)
|
312 |
+
setup_btn = gr.Button("🔧 Configurar")
|
313 |
+
setup_status = gr.Textbox(label="Status")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
314 |
|
315 |
+
labels_input = gr.Textbox(label="Rótulos (separados por vírgula)", value="gato,cachorro")
|
316 |
+
labels_btn = gr.Button("🏷️ Definir Rótulos")
|
317 |
+
labels_status = gr.Textbox(label="Status dos Rótulos")
|
318 |
+
|
319 |
+
# Upload de Imagens
|
320 |
+
with gr.Group():
|
321 |
+
gr.Markdown("## 2️⃣ Upload de Imagens")
|
322 |
+
with gr.Row():
|
323 |
+
upload_image = gr.Image(type="pil", label="Upload de Imagem")
|
324 |
+
with gr.Column():
|
325 |
+
add_btn = gr.Button("➕ Adicionar à Fila")
|
326 |
+
queue_status = gr.Textbox(label="Fila de Imagens")
|
327 |
+
queue_count = gr.Number(label="Total na Fila", value=0)
|
328 |
+
|
329 |
+
with gr.Row():
|
330 |
+
class_id = gr.Number(label="Classe (0, 1, 2...)", value=0, precision=0)
|
331 |
+
save_btn = gr.Button("💾 Salvar Fila na Classe", variant="primary")
|
332 |
+
clear_btn = gr.Button("🗑️ Limpar Fila")
|
333 |
+
save_status = gr.Textbox(label="Status do Upload")
|
334 |
+
|
335 |
+
# Treinamento
|
336 |
+
with gr.Group():
|
337 |
+
gr.Markdown("## 3️⃣ Preparação e Treinamento")
|
338 |
+
batch_size = gr.Number(label="Batch Size", value=8, precision=0)
|
339 |
+
prepare_btn = gr.Button("⚙️ Preparar Dados", variant="primary")
|
340 |
+
prepare_status = gr.Textbox(label="Status da Preparação", lines=4)
|
341 |
|
342 |
+
with gr.Row():
|
343 |
+
model_choice = gr.Dropdown(choices=list(MODELS.keys()), value="MobileNetV2", label="Modelo")
|
344 |
+
epochs = gr.Number(label="Épocas", value=5, precision=0)
|
345 |
+
learning_rate = gr.Number(label="Learning Rate", value=0.001)
|
346 |
+
|
347 |
+
train_btn = gr.Button("🚀 Treinar Modelo", variant="primary")
|
348 |
+
train_status = gr.Textbox(label="Status do Treinamento", lines=8)
|
349 |
+
|
350 |
+
# Avaliação
|
351 |
+
with gr.Group():
|
352 |
+
gr.Markdown("## 4️⃣ Avaliação")
|
353 |
+
with gr.Row():
|
354 |
+
eval_btn = gr.Button("📊 Avaliar Modelo", variant="primary")
|
355 |
+
matrix_btn = gr.Button("📈 Matriz de Confusão")
|
356 |
+
|
357 |
+
eval_results = gr.Textbox(label="Relatório de Avaliação", lines=12)
|
358 |
+
confusion_plot = gr.Image(label="Matriz de Confusão")
|
359 |
+
|
360 |
+
# Predição
|
361 |
+
with gr.Group():
|
362 |
+
gr.Markdown("## 5️⃣ Predição")
|
363 |
+
predict_img = gr.Image(type="pil", label="Imagem para Predição")
|
364 |
+
predict_btn = gr.Button("🔮 Predizer", variant="primary")
|
365 |
+
predict_result = gr.Textbox(label="Resultado da Predição", lines=3)
|
366 |
+
|
367 |
+
# Conectar eventos
|
368 |
+
setup_btn.click(setup_classes, [num_classes], [setup_status])
|
369 |
+
labels_btn.click(set_class_labels, [labels_input], [labels_status])
|
370 |
+
|
371 |
+
add_btn.click(add_image_to_queue, [upload_image], [queue_status, queue_count])
|
372 |
+
save_btn.click(save_images_to_class, [class_id], [save_status])
|
373 |
+
clear_btn.click(clear_image_queue, outputs=[queue_status, queue_count])
|
374 |
+
|
375 |
+
prepare_btn.click(prepare_data, [batch_size], [prepare_status])
|
376 |
+
train_btn.click(train_model, [model_choice, epochs, learning_rate], [train_status])
|
377 |
+
|
378 |
+
eval_btn.click(evaluate_model, outputs=[eval_results])
|
379 |
+
matrix_btn.click(generate_confusion_matrix, outputs=[confusion_plot])
|
380 |
+
|
381 |
+
predict_btn.click(predict_image, [predict_img], [predict_result])
|
382 |
|
383 |
+
return demo
|
384 |
+
|
385 |
+
if __name__ == "__main__":
|
386 |
+
print("🎯 Criando interface...")
|
387 |
+
demo = create_interface()
|
388 |
+
print("🚀 Iniciando aplicação...")
|
389 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, show_api=False)
|
|
|
|
requirements.txt
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
-
gradio==4.
|
2 |
torch==2.0.1
|
3 |
torchvision==0.15.2
|
4 |
scikit-learn==1.3.0
|
5 |
matplotlib==3.7.1
|
|
|
6 |
numpy==1.24.3
|
7 |
Pillow==9.5.0
|
|
|
1 |
+
gradio==4.15.0
|
2 |
torch==2.0.1
|
3 |
torchvision==0.15.2
|
4 |
scikit-learn==1.3.0
|
5 |
matplotlib==3.7.1
|
6 |
+
seaborn==0.12.2
|
7 |
numpy==1.24.3
|
8 |
Pillow==9.5.0
|