import os import shutil import gradio as gr import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms, models from torch.utils.data import DataLoader, random_split from PIL import Image import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import seaborn as sns import numpy as np from sklearn.metrics import classification_report, confusion_matrix import tempfile import warnings warnings.filterwarnings("ignore") print("🖥️ Iniciando sistema...") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Device: {device}") # Modelos disponíveis MODELS = { 'ResNet18': models.resnet18, 'ResNet34': models.resnet34, 'MobileNetV2': models.mobilenet_v2 } # Estado global class AppState: def __init__(self): self.model = None self.train_loader = None self.val_loader = None self.test_loader = None self.dataset_path = None self.class_dirs = [] self.class_labels = ['classe_0', 'classe_1'] self.num_classes = 2 self.image_queue = [] # Para armazenar imagens uploaded state = AppState() def setup_classes(num_classes_value): """Configura número de classes""" try: state.num_classes = int(num_classes_value) state.dataset_path = tempfile.mkdtemp() state.class_labels = [f'classe_{i}' for i in range(state.num_classes)] # Criar diretórios state.class_dirs = [] for i in range(state.num_classes): class_dir = os.path.join(state.dataset_path, f'classe_{i}') os.makedirs(class_dir, exist_ok=True) state.class_dirs.append(class_dir) return f"✅ Sistema configurado para {state.num_classes} classes" except Exception as e: return f"❌ Erro: {str(e)}" def set_class_labels(labels_text): """Define rótulos das classes""" try: labels = [label.strip() for label in labels_text.split(',')] if len(labels) != state.num_classes: return f"❌ Forneça {state.num_classes} rótulos separados por vírgula" state.class_labels = labels return f"✅ Rótulos definidos: {', '.join(state.class_labels)}" except Exception as e: return f"❌ Erro: {str(e)}" def add_image_to_queue(image): """Adiciona imagem à fila""" if image is None: return "❌ Selecione uma imagem", 0 state.image_queue.append(image) return f"✅ Imagem adicionada à fila. Total: {len(state.image_queue)}", len(state.image_queue) def save_images_to_class(class_id, clear_queue=True): """Salva todas as imagens da fila para uma classe""" try: if not state.image_queue: return "❌ Nenhuma imagem na fila" if not state.class_dirs: return "❌ Configure as classes primeiro" class_idx = int(class_id) if class_idx >= len(state.class_dirs): return "❌ Classe inválida" class_dir = state.class_dirs[class_idx] count = 0 for i, image in enumerate(state.image_queue): try: import time filename = f"img_{int(time.time())}_{i}.jpg" filepath = os.path.join(class_dir, filename) image.save(filepath) count += 1 except Exception as e: print(f"Erro salvando imagem {i}: {e}") if clear_queue: state.image_queue = [] class_name = state.class_labels[class_idx] return f"✅ {count} imagens salvas em '{class_name}'" except Exception as e: return f"❌ Erro: {str(e)}" def clear_image_queue(): """Limpa a fila de imagens""" state.image_queue = [] return "✅ Fila limpa", 0 def prepare_data(batch_size): """Prepara dados para treinamento""" try: if not state.dataset_path: return "❌ Configure as classes primeiro" transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) dataset = datasets.ImageFolder(state.dataset_path, transform=transform) if len(dataset) < 6: return f"❌ Poucas imagens ({len(dataset)}). Mínimo: 6" # Divisão: 70% treino, 20% val, 10% teste train_size = int(0.7 * len(dataset)) val_size = int(0.2 * len(dataset)) test_size = len(dataset) - train_size - val_size train_dataset, val_dataset, test_dataset = random_split( dataset, [train_size, val_size, test_size], generator=torch.Generator().manual_seed(42) ) batch_size = max(1, min(int(batch_size), 32)) state.train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) state.val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False) state.test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False) return f"✅ Dados preparados:\n• Treino: {train_size}\n• Validação: {val_size}\n• Teste: {test_size}\n• Batch size: {batch_size}" except Exception as e: return f"❌ Erro: {str(e)}" def train_model(model_name, epochs, lr): """Treina o modelo""" try: if state.train_loader is None: return "❌ Prepare os dados primeiro" # Carregar modelo state.model = MODELS[model_name](pretrained=True) # Adaptar última camada if hasattr(state.model, 'fc'): state.model.fc = nn.Linear(state.model.fc.in_features, state.num_classes) elif hasattr(state.model, 'classifier'): if isinstance(state.model.classifier, nn.Sequential): state.model.classifier[-1] = nn.Linear(state.model.classifier[-1].in_features, state.num_classes) state.model = state.model.to(device) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(state.model.parameters(), lr=float(lr)) results = [f"🚀 Treinando {model_name}"] state.model.train() for epoch in range(int(epochs)): running_loss = 0.0 correct = 0 total = 0 for inputs, labels in state.train_loader: inputs, labels = inputs.to(device), labels.to(device) optimizer.zero_grad() outputs = state.model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() _, predicted = torch.max(outputs, 1) total += labels.size(0) correct += (predicted == labels).sum().item() epoch_loss = running_loss / len(state.train_loader) epoch_acc = 100. * correct / total results.append(f"Época {epoch+1}: Loss={epoch_loss:.4f}, Acc={epoch_acc:.2f}%") results.append("✅ Treinamento concluído!") return "\n".join(results) except Exception as e: return f"❌ Erro: {str(e)}" def evaluate_model(): """Avalia o modelo""" try: if state.model is None or state.test_loader is None: return "❌ Modelo/dados não disponíveis" state.model.eval() all_preds = [] all_labels = [] with torch.no_grad(): for inputs, labels in state.test_loader: inputs, labels = inputs.to(device), labels.to(device) outputs = state.model(inputs) _, preds = torch.max(outputs, 1) all_preds.extend(preds.cpu().numpy()) all_labels.extend(labels.cpu().numpy()) report = classification_report(all_labels, all_preds, target_names=state.class_labels, zero_division=0) return f"📊 RELATÓRIO DE AVALIAÇÃO:\n\n{report}" except Exception as e: return f"❌ Erro: {str(e)}" def generate_confusion_matrix(): """Gera matriz de confusão""" try: if state.model is None or state.test_loader is None: return None state.model.eval() all_preds = [] all_labels = [] with torch.no_grad(): for inputs, labels in state.test_loader: inputs, labels = inputs.to(device), labels.to(device) outputs = state.model(inputs) _, preds = torch.max(outputs, 1) all_preds.extend(preds.cpu().numpy()) all_labels.extend(labels.cpu().numpy()) cm = confusion_matrix(all_labels, all_preds) plt.figure(figsize=(8, 6)) sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", xticklabels=state.class_labels, yticklabels=state.class_labels) plt.xlabel('Predições') plt.ylabel('Valores Reais') plt.title('Matriz de Confusão') plt.tight_layout() temp_path = tempfile.NamedTemporaryFile(suffix='.png', delete=False).name plt.savefig(temp_path, dpi=150, bbox_inches='tight') plt.close() return temp_path except Exception as e: return None def predict_image(image): """Prediz uma única imagem""" try: if state.model is None: return "❌ Treine o modelo primeiro" if image is None: return "❌ Selecione uma imagem" transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) img_tensor = transform(image).unsqueeze(0).to(device) state.model.eval() with torch.no_grad(): outputs = state.model(img_tensor) probs = torch.nn.functional.softmax(outputs[0], dim=0) _, predicted = torch.max(outputs, 1) class_id = predicted.item() confidence = probs[class_id].item() * 100 class_name = state.class_labels[class_id] return f"🎯 Predição: {class_name}\n📊 Confiança: {confidence:.2f}%" except Exception as e: return f"❌ Erro: {str(e)}" # Interface usando componentes mais antigos/estáveis def create_interface(): with gr.Blocks(title="🖼️ Classificador Completo") as demo: gr.Markdown("# 🖼️ Sistema de Classificação de Imagens Completo") # Configuração with gr.Group(): gr.Markdown("## 1️⃣ Configuração") with gr.Row(): num_classes = gr.Number(label="Número de Classes (2-5)", value=2, precision=0) setup_btn = gr.Button("🔧 Configurar") setup_status = gr.Textbox(label="Status") labels_input = gr.Textbox(label="Rótulos (separados por vírgula)", value="gato,cachorro") labels_btn = gr.Button("🏷️ Definir Rótulos") labels_status = gr.Textbox(label="Status dos Rótulos") # Upload de Imagens with gr.Group(): gr.Markdown("## 2️⃣ Upload de Imagens") with gr.Row(): upload_image = gr.Image(type="pil", label="Upload de Imagem") with gr.Column(): add_btn = gr.Button("➕ Adicionar à Fila") queue_status = gr.Textbox(label="Fila de Imagens") queue_count = gr.Number(label="Total na Fila", value=0) with gr.Row(): class_id = gr.Number(label="Classe (0, 1, 2...)", value=0, precision=0) save_btn = gr.Button("💾 Salvar Fila na Classe", variant="primary") clear_btn = gr.Button("🗑️ Limpar Fila") save_status = gr.Textbox(label="Status do Upload") # Treinamento with gr.Group(): gr.Markdown("## 3️⃣ Preparação e Treinamento") batch_size = gr.Number(label="Batch Size", value=8, precision=0) prepare_btn = gr.Button("⚙️ Preparar Dados", variant="primary") prepare_status = gr.Textbox(label="Status da Preparação", lines=4) with gr.Row(): model_choice = gr.Dropdown(choices=list(MODELS.keys()), value="MobileNetV2", label="Modelo") epochs = gr.Number(label="Épocas", value=5, precision=0) learning_rate = gr.Number(label="Learning Rate", value=0.001) train_btn = gr.Button("🚀 Treinar Modelo", variant="primary") train_status = gr.Textbox(label="Status do Treinamento", lines=8) # Avaliação with gr.Group(): gr.Markdown("## 4️⃣ Avaliação") with gr.Row(): eval_btn = gr.Button("📊 Avaliar Modelo", variant="primary") matrix_btn = gr.Button("📈 Matriz de Confusão") eval_results = gr.Textbox(label="Relatório de Avaliação", lines=12) confusion_plot = gr.Image(label="Matriz de Confusão") # Predição with gr.Group(): gr.Markdown("## 5️⃣ Predição") predict_img = gr.Image(type="pil", label="Imagem para Predição") predict_btn = gr.Button("🔮 Predizer", variant="primary") predict_result = gr.Textbox(label="Resultado da Predição", lines=3) # Conectar eventos setup_btn.click(setup_classes, [num_classes], [setup_status]) labels_btn.click(set_class_labels, [labels_input], [labels_status]) add_btn.click(add_image_to_queue, [upload_image], [queue_status, queue_count]) save_btn.click(save_images_to_class, [class_id], [save_status]) clear_btn.click(clear_image_queue, outputs=[queue_status, queue_count]) prepare_btn.click(prepare_data, [batch_size], [prepare_status]) train_btn.click(train_model, [model_choice, epochs, learning_rate], [train_status]) eval_btn.click(evaluate_model, outputs=[eval_results]) matrix_btn.click(generate_confusion_matrix, outputs=[confusion_plot]) predict_btn.click(predict_image, [predict_img], [predict_result]) return demo if __name__ == "__main__": print("🎯 Criando interface...") demo = create_interface() print("🚀 Iniciando aplicação...") demo.launch(server_name="0.0.0.0", server_port=7860, show_api=False)