import os import shutil import gradio as gr import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms, models from torch.utils.data import DataLoader, random_split from PIL import Image import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import seaborn as sns import numpy as np from sklearn.metrics import classification_report, confusion_matrix import tempfile import warnings warnings.filterwarnings("ignore") print("🖥️ Iniciando sistema...") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Device: {device}") # Modelos disponíveis MODELS = { 'ResNet18': models.resnet18, 'ResNet34': models.resnet34, 'ResNet50': models.resnet50, 'MobileNetV2': models.mobilenet_v2 } # Estado global class AppState: def __init__(self): self.model = None self.train_loader = None self.val_loader = None self.test_loader = None self.dataset_path = None self.class_dirs = [] self.class_labels = ['classe_0', 'classe_1'] self.num_classes = 2 self.image_queue = [] state = AppState() def setup_classes(num_classes_value): """Configura número de classes""" try: state.num_classes = max(2, min(5, int(num_classes_value))) state.dataset_path = tempfile.mkdtemp() state.class_labels = [f'classe_{i}' for i in range(state.num_classes)] # Criar diretórios state.class_dirs = [] for i in range(state.num_classes): class_dir = os.path.join(state.dataset_path, f'classe_{i}') os.makedirs(class_dir, exist_ok=True) state.class_dirs.append(class_dir) return f"✅ Sistema configurado para {state.num_classes} classes" except Exception as e: return f"❌ Erro: {str(e)}" def set_class_labels(labels_text): """Define rótulos das classes""" try: labels = [label.strip() for label in labels_text.split(',')] if len(labels) != state.num_classes: return f"❌ Forneça {state.num_classes} rótulos separados por vírgula" state.class_labels = labels return f"✅ Rótulos definidos: {', '.join(state.class_labels)}" except Exception as e: return f"❌ Erro: {str(e)}" def add_images_to_queue(images): """Adiciona múltiplas imagens à fila""" if not images: return "❌ Nenhuma imagem selecionada", len(state.image_queue) count = 0 for image_file in images: try: if image_file is not None: # Carregar imagem img = Image.open(image_file.name).convert('RGB') state.image_queue.append(img) count += 1 except Exception as e: print(f"Erro processando imagem: {e}") return f"✅ {count} imagens adicionadas. Total na fila: {len(state.image_queue)}", len(state.image_queue) def save_queue_to_class(class_id): """Salva fila de imagens para uma classe""" try: if not state.image_queue: return "❌ Nenhuma imagem na fila" if not state.class_dirs: return "❌ Configure as classes primeiro" class_idx = max(0, min(int(class_id), len(state.class_dirs) - 1)) class_dir = state.class_dirs[class_idx] count = 0 for i, image in enumerate(state.image_queue): try: import time filename = f"img_{int(time.time())}_{i}.jpg" filepath = os.path.join(class_dir, filename) image.save(filepath) count += 1 except Exception as e: print(f"Erro salvando imagem {i}: {e}") state.image_queue = [] # Limpar fila class_name = state.class_labels[class_idx] return f"✅ {count} imagens salvas em '{class_name}'" except Exception as e: return f"❌ Erro: {str(e)}" def clear_queue(): """Limpa a fila""" state.image_queue = [] return "✅ Fila limpa", 0 def prepare_data(batch_size): """Prepara dados""" try: if not state.dataset_path: return "❌ Configure as classes primeiro" transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) dataset = datasets.ImageFolder(state.dataset_path, transform=transform) if len(dataset) < 6: return f"❌ Poucas imagens ({len(dataset)}). Mínimo: 6" # Divisão: 70% treino, 20% val, 10% teste train_size = int(0.7 * len(dataset)) val_size = int(0.2 * len(dataset)) test_size = len(dataset) - train_size - val_size train_dataset, val_dataset, test_dataset = random_split( dataset, [train_size, val_size, test_size], generator=torch.Generator().manual_seed(42) ) batch_size = max(1, min(int(batch_size), 32)) state.train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) state.val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False) state.test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False) return f"✅ Dados preparados:\n• Treino: {train_size}\n• Validação: {val_size}\n• Teste: {test_size}\n• Batch size: {batch_size}" except Exception as e: return f"❌ Erro: {str(e)}" def train_model(model_name, epochs, lr): """Treina modelo""" try: if state.train_loader is None: return "❌ Prepare os dados primeiro" # Carregar modelo state.model = MODELS[model_name](pretrained=True) # Adaptar última camada if hasattr(state.model, 'fc'): state.model.fc = nn.Linear(state.model.fc.in_features, state.num_classes) elif hasattr(state.model, 'classifier'): if isinstance(state.model.classifier, nn.Sequential): state.model.classifier[-1] = nn.Linear(state.model.classifier[-1].in_features, state.num_classes) state.model = state.model.to(device) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(state.model.parameters(), lr=float(lr)) results = [f"🚀 Treinando {model_name}"] state.model.train() for epoch in range(int(epochs)): running_loss = 0.0 correct = 0 total = 0 for inputs, labels in state.train_loader: inputs, labels = inputs.to(device), labels.to(device) optimizer.zero_grad() outputs = state.model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() _, predicted = torch.max(outputs, 1) total += labels.size(0) correct += (predicted == labels).sum().item() epoch_loss = running_loss / len(state.train_loader) epoch_acc = 100. * correct / total results.append(f"Época {epoch+1}: Loss={epoch_loss:.4f}, Acc={epoch_acc:.2f}%") results.append("✅ Treinamento concluído!") return "\n".join(results) except Exception as e: return f"❌ Erro: {str(e)}" def evaluate_model(): """Avalia modelo""" try: if state.model is None or state.test_loader is None: return "❌ Modelo/dados não disponíveis" state.model.eval() all_preds = [] all_labels = [] with torch.no_grad(): for inputs, labels in state.test_loader: inputs, labels = inputs.to(device), labels.to(device) outputs = state.model(inputs) _, preds = torch.max(outputs, 1) all_preds.extend(preds.cpu().numpy()) all_labels.extend(labels.cpu().numpy()) report = classification_report(all_labels, all_preds, target_names=state.class_labels, zero_division=0) return f"📊 RELATÓRIO DE AVALIAÇÃO:\n\n{report}" except Exception as e: return f"❌ Erro: {str(e)}" def generate_confusion_matrix(): """Gera matriz de confusão""" try: if state.model is None or state.test_loader is None: return None state.model.eval() all_preds = [] all_labels = [] with torch.no_grad(): for inputs, labels in state.test_loader: inputs, labels = inputs.to(device), labels.to(device) outputs = state.model(inputs) _, preds = torch.max(outputs, 1) all_preds.extend(preds.cpu().numpy()) all_labels.extend(labels.cpu().numpy()) cm = confusion_matrix(all_labels, all_preds) plt.figure(figsize=(8, 6)) sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", xticklabels=state.class_labels, yticklabels=state.class_labels) plt.xlabel('Predições') plt.ylabel('Valores Reais') plt.title('Matriz de Confusão') plt.tight_layout() temp_path = tempfile.NamedTemporaryFile(suffix='.png', delete=False).name plt.savefig(temp_path, dpi=150, bbox_inches='tight') plt.close() return temp_path except Exception as e: return None def predict_image(image): """Prediz imagem""" try: if state.model is None: return "❌ Treine o modelo primeiro" if image is None: return "❌ Selecione uma imagem" transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) img_tensor = transform(image).unsqueeze(0).to(device) state.model.eval() with torch.no_grad(): outputs = state.model(img_tensor) probs = torch.nn.functional.softmax(outputs[0], dim=0) _, predicted = torch.max(outputs, 1) class_id = predicted.item() confidence = probs[class_id].item() * 100 class_name = state.class_labels[class_id] return f"🎯 Predição: {class_name}\n📊 Confiança: {confidence:.2f}%" except Exception as e: return f"❌ Erro: {str(e)}" # Interface usando Gradio 3.x (sintaxe correta) def create_interface(): # Interface com abas usando Gradio 3.x with gr.Blocks() as demo: gr.Markdown("# 🖼️ Sistema de Classificação de Imagens Completo") gr.Markdown("**Versão estável sem bugs - Funcionalidade completa mantida**") with gr.Tab("1️⃣ Configuração"): gr.Markdown("### 🎯 Configurar Classes") num_classes_input = gr.Number(value=2, label="Número de Classes (2-5)") setup_btn = gr.Button("🔧 Configurar Classes", variant="primary") setup_output = gr.Textbox(label="Status da Configuração") gr.Markdown("### 🏷️ Definir Rótulos") labels_input = gr.Textbox(value="gato,cachorro", label="Rótulos (separados por vírgula)") labels_btn = gr.Button("🏷️ Definir Rótulos") labels_output = gr.Textbox(label="Status dos Rótulos") # Conectar eventos setup_btn.click(setup_classes, inputs=[num_classes_input], outputs=[setup_output]) labels_btn.click(set_class_labels, inputs=[labels_input], outputs=[labels_output]) with gr.Tab("2️⃣ Upload de Imagens"): gr.Markdown("### 📤 Upload Múltiplo via Fila") images_upload = gr.File(file_count="multiple", label="Selecionar Múltiplas Imagens", file_types=["image"]) add_btn = gr.Button("➕ Adicionar à Fila") with gr.Row(): queue_output = gr.Textbox(label="Status da Fila") queue_count_output = gr.Number(label="Total na Fila", value=0) gr.Markdown("### 💾 Salvar por Classe") with gr.Row(): class_id_input = gr.Number(value=0, label="Classe de Destino (0, 1, 2...)") save_btn = gr.Button("💾 Salvar Fila na Classe", variant="primary") clear_btn = gr.Button("🗑️ Limpar Fila") save_output = gr.Textbox(label="Status do Upload") # Conectar eventos add_btn.click(add_images_to_queue, inputs=[images_upload], outputs=[queue_output, queue_count_output]) save_btn.click(save_queue_to_class, inputs=[class_id_input], outputs=[save_output]) clear_btn.click(clear_queue, outputs=[queue_output, queue_count_output]) with gr.Tab("3️⃣ Preparação e Treinamento"): gr.Markdown("### ⚙️ Preparar Dados") batch_size_input = gr.Number(value=8, label="Batch Size") prepare_btn = gr.Button("⚙️ Preparar Dados", variant="primary") prepare_output = gr.Textbox(label="Status da Preparação", lines=4) gr.Markdown("### 🚀 Configurar e Treinar Modelo") with gr.Row(): model_input = gr.Dropdown(choices=list(MODELS.keys()), value="MobileNetV2", label="Modelo") epochs_input = gr.Number(value=5, label="Épocas") lr_input = gr.Number(value=0.001, label="Learning Rate") train_btn = gr.Button("🚀 Iniciar Treinamento", variant="primary") train_output = gr.Textbox(label="Status do Treinamento", lines=8) # Conectar eventos prepare_btn.click(prepare_data, inputs=[batch_size_input], outputs=[prepare_output]) train_btn.click(train_model, inputs=[model_input, epochs_input, lr_input], outputs=[train_output]) with gr.Tab("4️⃣ Avaliação do Modelo"): gr.Markdown("### 📊 Avaliar Desempenho") with gr.Row(): eval_btn = gr.Button("📊 Avaliar Modelo", variant="primary") matrix_btn = gr.Button("📈 Gerar Matriz de Confusão") eval_output = gr.Textbox(label="Relatório de Avaliação", lines=12) matrix_output = gr.Image(label="Matriz de Confusão") # Conectar eventos eval_btn.click(evaluate_model, outputs=[eval_output]) matrix_btn.click(generate_confusion_matrix, outputs=[matrix_output]) with gr.Tab("5️⃣ Predição"): gr.Markdown("### 🔮 Predizer Novas Imagens") predict_image_input = gr.Image(type="pil", label="Imagem para Predição") predict_btn = gr.Button("🔮 Fazer Predição", variant="primary") predict_output = gr.Textbox(label="Resultado da Predição", lines=3) # Conectar eventos predict_btn.click(predict_image, inputs=[predict_image_input], outputs=[predict_output]) # Informações adicionais with gr.Tab("ℹ️ Informações"): gr.Markdown(""" ## 📋 Como Usar Este Sistema ### 1️⃣ **Configuração Inicial** - Defina o número de classes (2-5) - Configure rótulos personalizados separados por vírgula ### 2️⃣ **Upload de Imagens** - Selecione múltiplas imagens - Adicione à fila - Escolha a classe de destino (0, 1, 2...) - Salve a fila na classe escolhida - Repita para todas as classes ### 3️⃣ **Treinamento** - Configure batch size (recomendado: 8-16) - Prepare os dados - Escolha modelo (MobileNetV2 = mais rápido) - Configure épocas (recomendado: 3-10) - Inicie o treinamento ### 4️⃣ **Avaliação** - Avalie o modelo para ver métricas - Gere matriz de confusão para análise visual ### 5️⃣ **Predição** - Teste com novas imagens - Veja predições com níveis de confiança ## 🎯 **Dicas para Melhores Resultados** - Use pelo menos 10-20 imagens por classe - Imagens bem balanceadas entre classes - Imagens claras e bem iluminadas - Varie poses, ângulos e ambientes ## 🔧 **Modelos Disponíveis** - **MobileNetV2**: Rápido, ideal para prototipagem - **ResNet18**: Bom equilíbrio velocidade/precisão - **ResNet34/50**: Maior precisão, mais lento """) return demo if __name__ == "__main__": print("🎯 Criando interface...") demo = create_interface() print("🚀 Iniciando aplicação...") demo.launch(server_name="0.0.0.0", server_port=7860)