Commit
·
5ffd823
1
Parent(s):
5e37164
Subindo arquivos371
Browse files
app.py
CHANGED
|
@@ -1,32 +1,26 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
import numpy as np
|
|
|
|
| 4 |
from transformers import Wav2Vec2Processor, Wav2Vec2ForSequenceClassification
|
| 5 |
from safetensors.torch import load_file
|
| 6 |
|
| 7 |
-
#
|
| 8 |
-
model_name =
|
| 9 |
processor = Wav2Vec2Processor.from_pretrained(model_name)
|
| 10 |
|
| 11 |
# Carregar o modelo do arquivo safetensors
|
| 12 |
-
state_dict = load_file("
|
| 13 |
model = Wav2Vec2ForSequenceClassification.from_pretrained(model_name, state_dict=state_dict)
|
| 14 |
|
| 15 |
def classify_accent(audio):
|
| 16 |
if audio is None:
|
| 17 |
return "Error: No se recibió audio"
|
| 18 |
|
| 19 |
-
# Verificar o tipo de entrada de áudio
|
| 20 |
-
print(f"Tipo de entrada de audio: {type(audio)}")
|
| 21 |
-
|
| 22 |
-
# Verificar a estrutura do áudio
|
| 23 |
-
print(f"Entrada de audio recibida: {audio}")
|
| 24 |
-
|
| 25 |
try:
|
| 26 |
-
#
|
| 27 |
-
if isinstance(audio,
|
| 28 |
-
audio_array =
|
| 29 |
-
sample_rate = audio[1] # A taxa de amostragem no segundo elemento da tupla
|
| 30 |
else:
|
| 31 |
raise ValueError("Formato de áudio inesperado.")
|
| 32 |
|
|
@@ -37,7 +31,6 @@ def classify_accent(audio):
|
|
| 37 |
|
| 38 |
# Resample para 16kHz, se necessário
|
| 39 |
if sample_rate != 16000:
|
| 40 |
-
import librosa
|
| 41 |
audio_array = librosa.resample(audio_array, orig_sr=sample_rate, target_sr=16000)
|
| 42 |
|
| 43 |
input_values = processor(audio_array, return_tensors="pt", sampling_rate=16000).input_values
|
|
@@ -63,10 +56,10 @@ description_html = """
|
|
| 63 |
# Interface do Gradio
|
| 64 |
interface = gr.Interface(
|
| 65 |
fn=classify_accent,
|
| 66 |
-
inputs=gr.Audio(type="
|
| 67 |
outputs="label",
|
| 68 |
title="Clasificador de Sotaques (Español vs Otro)",
|
| 69 |
description=description_html
|
| 70 |
)
|
| 71 |
|
| 72 |
-
interface.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
import numpy as np
|
| 4 |
+
import librosa
|
| 5 |
from transformers import Wav2Vec2Processor, Wav2Vec2ForSequenceClassification
|
| 6 |
from safetensors.torch import load_file
|
| 7 |
|
| 8 |
+
# Caminho para o modelo e processador
|
| 9 |
+
model_name = 'results'
|
| 10 |
processor = Wav2Vec2Processor.from_pretrained(model_name)
|
| 11 |
|
| 12 |
# Carregar o modelo do arquivo safetensors
|
| 13 |
+
state_dict = load_file(f"{model_name}/model.safetensors")
|
| 14 |
model = Wav2Vec2ForSequenceClassification.from_pretrained(model_name, state_dict=state_dict)
|
| 15 |
|
| 16 |
def classify_accent(audio):
|
| 17 |
if audio is None:
|
| 18 |
return "Error: No se recibió audio"
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
try:
|
| 21 |
+
# Verificar se o áudio é um caminho de arquivo
|
| 22 |
+
if isinstance(audio, str):
|
| 23 |
+
audio_array, sample_rate = librosa.load(audio, sr=None)
|
|
|
|
| 24 |
else:
|
| 25 |
raise ValueError("Formato de áudio inesperado.")
|
| 26 |
|
|
|
|
| 31 |
|
| 32 |
# Resample para 16kHz, se necessário
|
| 33 |
if sample_rate != 16000:
|
|
|
|
| 34 |
audio_array = librosa.resample(audio_array, orig_sr=sample_rate, target_sr=16000)
|
| 35 |
|
| 36 |
input_values = processor(audio_array, return_tensors="pt", sampling_rate=16000).input_values
|
|
|
|
| 56 |
# Interface do Gradio
|
| 57 |
interface = gr.Interface(
|
| 58 |
fn=classify_accent,
|
| 59 |
+
inputs=gr.Audio(type="filepath"),
|
| 60 |
outputs="label",
|
| 61 |
title="Clasificador de Sotaques (Español vs Otro)",
|
| 62 |
description=description_html
|
| 63 |
)
|
| 64 |
|
| 65 |
+
interface.launch(debug=True)
|