Spaces:
Sleeping
Sleeping
File size: 5,667 Bytes
8b1f7a0 3b3db42 8b1f7a0 3b3db42 c0da33d 3b3db42 81722bf 4d3bd61 c0da33d 2a860f6 c0da33d 06b0c2d 5fe3b95 c0da33d 1ba1924 81722bf 06b0c2d 0767925 06b0c2d 0767925 06b0c2d 0767925 1ba1924 c0da33d 1ba1924 c0da33d 06b0c2d 1ba1924 c0da33d 8b1f7a0 2a860f6 8b1f7a0 2a860f6 8b1f7a0 16a06c4 2a860f6 81722bf 8b1f7a0 5fe3b95 8b1f7a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
import json
import os
import re
from collections import defaultdict
from datetime import datetime, timedelta, timezone
import huggingface_hub
from huggingface_hub import ModelCard
from huggingface_hub.hf_api import ModelInfo
from transformers import AutoConfig, AutoModelForTokenClassification
from transformers.models.auto.tokenization_auto import AutoTokenizer
def check_model_card(repo_id: str) -> tuple[bool, str]:
"""Checks if the model card and license exist and have been filled"""
try:
card = ModelCard.load(repo_id)
except huggingface_hub.utils.EntryNotFoundError:
return False, "Please add a model card to your model to explain how you trained/fine-tuned it."
# Enforce license metadata
if card.data.license is None:
if not ("license_name" in card.data and "license_link" in card.data):
return False, (
"License not found. Please add a license to your model card using the `license` metadata or a"
" `license_name`/`license_link` pair."
)
# Enforce card content
if len(card.text) < 200:
return False, "Please add a description to your model card, it is too short."
return True, ""
def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]:
"""Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
try:
config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
# Check if model can be loaded for token classification
try:
model = AutoModelForTokenClassification.from_pretrained(
model_name,
revision=revision,
trust_remote_code=trust_remote_code,
token=token
)
# Check if it's suitable for our NER task (should have 21 labels)
if hasattr(model.config, 'num_labels') and model.config.num_labels not in [2, 21]:
return (
False,
f"has {model.config.num_labels} labels, but French medical NER requires models with 2 (base) or 21 (fine-tuned) labels",
None
)
except Exception as e:
return (False, f"cannot be loaded for token classification: {e}", None)
if test_tokenizer:
try:
tk = AutoTokenizer.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
except ValueError as e:
return (
False,
f"uses a tokenizer which is not in a transformers release: {e}",
None
)
except Exception as e:
return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None)
return True, None, config
except ValueError:
return (
False,
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
None
)
except Exception as e:
return False, "was not found on hub!", None
def get_model_size(model_info: ModelInfo, precision: str):
"""Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
try:
model_size = round(model_info.safetensors["total"] / 1e9, 3)
except (AttributeError, TypeError):
return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
model_size = size_factor * model_size
return model_size
def get_model_arch(model_info: ModelInfo):
"""Gets the model architecture from the configuration"""
arch = model_info.config.get("architectures", ["Unknown"])
if isinstance(arch, list) and len(arch) > 0:
arch_name = arch[0]
# Map common architectures to user-friendly names
if "Camembert" in arch_name:
return "CamemBERT"
elif "Bert" in arch_name:
return "BERT"
elif "Roberta" in arch_name:
return "RoBERTa"
else:
return arch_name.replace("ForTokenClassification", "")
return "Unknown"
def already_submitted_models(requested_models_dir: str) -> set[str]:
"""Gather a list of already submitted models to avoid duplicates"""
depth = 1
file_names = []
users_to_submission_dates = defaultdict(list)
for root, _, files in os.walk(requested_models_dir):
current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
if current_depth == depth:
for file in files:
if not file.endswith(".json"):
continue
with open(os.path.join(root, file), "r") as f:
info = json.load(f)
file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
# Select organisation
if info["model"].count("/") == 0 or "submitted_time" not in info:
continue
organisation, _ = info["model"].split("/")
users_to_submission_dates[organisation].append(info["submitted_time"])
return set(file_names), users_to_submission_dates
|