rntc commited on
Commit
dbd8502
·
1 Parent(s): 81722bf

Fix PyTorch dependency and Average column KeyError

Browse files
Files changed (3) hide show
  1. requirements.txt +1 -0
  2. src/display/utils.py +0 -1
  3. src/populate.py +4 -1
requirements.txt CHANGED
@@ -16,5 +16,6 @@ tokenizers>=0.15.0
16
  sentencepiece
17
 
18
  # Additional dependencies for French medical NER
 
19
  seqeval>=1.2.2
20
  scikit-learn>=1.3.0
 
16
  sentencepiece
17
 
18
  # Additional dependencies for French medical NER
19
+ torch>=2.6.0
20
  seqeval>=1.2.2
21
  scikit-learn>=1.3.0
src/display/utils.py CHANGED
@@ -26,7 +26,6 @@ auto_eval_column_dict = []
26
  auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
27
  auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
28
  #Scores
29
- auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
30
  for task in Tasks:
31
  auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
32
  # Model information
 
26
  auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
27
  auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
28
  #Scores
 
29
  for task in Tasks:
30
  auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
31
  # Model information
src/populate.py CHANGED
@@ -6,6 +6,7 @@ import pandas as pd
6
  from src.display.formatting import has_no_nan_values, make_clickable_model
7
  from src.display.utils import AutoEvalColumn, EvalQueueColumn
8
  from src.leaderboard.read_evals import get_raw_eval_results
 
9
 
10
 
11
  def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
@@ -14,7 +15,9 @@ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchm
14
  all_data_json = [v.to_dict() for v in raw_data]
15
 
16
  df = pd.DataFrame.from_records(all_data_json)
17
- df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
 
 
18
  df = df[cols].round(decimals=2)
19
 
20
  # filter out if any of the benchmarks have not been produced
 
6
  from src.display.formatting import has_no_nan_values, make_clickable_model
7
  from src.display.utils import AutoEvalColumn, EvalQueueColumn
8
  from src.leaderboard.read_evals import get_raw_eval_results
9
+ from src.about import Tasks
10
 
11
 
12
  def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
 
15
  all_data_json = [v.to_dict() for v in raw_data]
16
 
17
  df = pd.DataFrame.from_records(all_data_json)
18
+ # Sort by the first task (EMEA NER) since we don't have an average for NER tasks
19
+ first_task = list(Tasks)[0] # emea_ner
20
+ df = df.sort_values(by=[getattr(AutoEvalColumn, first_task.name).name], ascending=False)
21
  df = df[cols].round(decimals=2)
22
 
23
  # filter out if any of the benchmarks have not been produced