from dataclasses import dataclass, make_dataclass from enum import Enum import pandas as pd from src.about import Tasks def fields(raw_class): return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] # These classes are for user facing column names, # to avoid having to change them all around the code # when a modif is needed @dataclass class ColumnContent: name: str type: str displayed_by_default: bool hidden: bool = False never_hidden: bool = False ## Leaderboard columns auto_eval_column_dict = [] # Init auto_eval_column_dict.append(("model_type_symbol", ColumnContent("T", "str", True, never_hidden=True))) auto_eval_column_dict.append(("model", ColumnContent("Model", "markdown", True, never_hidden=True))) # Average score auto_eval_column_dict.append(("average", ColumnContent("Average", "number", True))) #Scores for task in Tasks: auto_eval_column_dict.append((task.name, ColumnContent(task.value.col_name, "number", True))) # Model information auto_eval_column_dict.append(("precision", ColumnContent("Precision", "str", False))) auto_eval_column_dict.append(("license", ColumnContent("Hub License", "str", False))) auto_eval_column_dict.append(("params", ColumnContent("#Params (B)", "number", False))) auto_eval_column_dict.append(("likes", ColumnContent("Hub ❤️", "number", False))) auto_eval_column_dict.append(("still_on_hub", ColumnContent("Available on the hub", "bool", False))) auto_eval_column_dict.append(("revision", ColumnContent("Model sha", "str", False, False))) # We use make dataclass to dynamically fill the scores from Tasks AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True) ## For the queue columns in the submission tab @dataclass(frozen=True) class EvalQueueColumn: # Queue column model = ColumnContent("model", "markdown", True) revision = ColumnContent("revision", "str", True) precision = ColumnContent("precision", "str", True) status = ColumnContent("status", "str", True) ## All the model information that we might need @dataclass class ModelDetails: name: str display_name: str = "" symbol: str = "" # emoji class ModelType(Enum): FT = ModelDetails(name="fine-tuned", symbol="🔶") Unknown = ModelDetails(name="", symbol="?") def to_str(self, separator=" "): return f"{self.value.symbol}{separator}{self.value.name}" @staticmethod def from_str(type): if "fine-tuned" in type or "🔶" in type: return ModelType.FT return ModelType.Unknown @staticmethod def from_config(config): """Determine model type from configuration - for NER models, most will be fine-tuned""" if hasattr(config, 'num_labels') and config.num_labels > 2: return ModelType.FT # Fine-tuned for NER return ModelType.Unknown class WeightType(Enum): Original = ModelDetails("Original") class Precision(Enum): float16 = ModelDetails("float16") bfloat16 = ModelDetails("bfloat16") Unknown = ModelDetails("?") @staticmethod def from_str(precision): if precision in ["torch.float16", "float16"]: return Precision.float16 if precision in ["torch.bfloat16", "bfloat16"]: return Precision.bfloat16 return Precision.Unknown # Column selection COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden] EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] BENCHMARK_COLS = [t.value.col_name for t in Tasks]