Spaces:
Runtime error
Runtime error
Commit
Β·
b800e08
1
Parent(s):
401718e
Multi Agent Setup
Browse files- README.md +9 -7
- agents.py +100 -0
- app.py +234 -0
- requirements.txt +14 -0
- tooling.py +302 -0
README.md
CHANGED
@@ -1,13 +1,15 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 5.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
|
|
|
|
|
11 |
---
|
12 |
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Template Final Assignment
|
3 |
+
emoji: π΅π»ββοΈ
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 5.25.2
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
hf_oauth: true
|
11 |
+
# optional, default duration is 8 hours/480 minutes. Max duration is 30 days/43200 minutes.
|
12 |
+
hf_oauth_expiration_minutes: 480
|
13 |
---
|
14 |
|
15 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
agents.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Import Modules
|
2 |
+
import os
|
3 |
+
import pandas as pd
|
4 |
+
import torch
|
5 |
+
from smolagents import LiteLLMModel, OpenAIServerModel
|
6 |
+
from smolagents import (ToolCallingAgent,
|
7 |
+
CodeAgent,
|
8 |
+
DuckDuckGoSearchTool,
|
9 |
+
VisitWebpageTool,
|
10 |
+
WikipediaSearchTool,
|
11 |
+
FinalAnswerTool,
|
12 |
+
PythonInterpreterTool)
|
13 |
+
|
14 |
+
# Custom Modules
|
15 |
+
from tooling import (vision_language_tool,
|
16 |
+
read_excel_tool,
|
17 |
+
speech_to_text_tool,
|
18 |
+
youtube_captions_tool)
|
19 |
+
|
20 |
+
# Agent Model
|
21 |
+
model = OpenAIServerModel(model_id = "gpt-4.1",
|
22 |
+
api_key = os.getenv('OPENAI_KEY'))
|
23 |
+
|
24 |
+
# Create Vision Agent
|
25 |
+
def create_vision_agent():
|
26 |
+
# Create Vision Agent
|
27 |
+
return ToolCallingAgent(model = model,
|
28 |
+
tools = [FinalAnswerTool(),
|
29 |
+
vision_language_tool],
|
30 |
+
name = 'vision_agent',
|
31 |
+
planning_interval = 2,
|
32 |
+
verbosity_level = 2,
|
33 |
+
max_steps = 4,
|
34 |
+
provide_run_summary = True,
|
35 |
+
description = """
|
36 |
+
A team member that will use a vision language model to answer a question about an image.
|
37 |
+
Ask him for all your questions that require answering a question about a picture or image.
|
38 |
+
Provide the file name of the image and the specific question that you want it answer.
|
39 |
+
""")
|
40 |
+
|
41 |
+
# Create Web Agent
|
42 |
+
def create_web_agent():
|
43 |
+
# Create Web Agent
|
44 |
+
return CodeAgent(model = model,
|
45 |
+
tools = [FinalAnswerTool(),
|
46 |
+
DuckDuckGoSearchTool(max_results = 15),
|
47 |
+
VisitWebpageTool(max_output_length = 75000),
|
48 |
+
WikipediaSearchTool(user_agent = "FinalAssignmentResearchBot ([email protected])",
|
49 |
+
language = "en",
|
50 |
+
content_type = "text",
|
51 |
+
extract_format = "WIKI")],
|
52 |
+
additional_authorized_imports = ["json",
|
53 |
+
"pandas",
|
54 |
+
're',
|
55 |
+
'bs4',
|
56 |
+
'requests',
|
57 |
+
'numpy',
|
58 |
+
'math',
|
59 |
+
'xml',
|
60 |
+
'scikit-learn'],
|
61 |
+
name = 'web_agent',
|
62 |
+
planning_interval = 3,
|
63 |
+
verbosity_level = 2,
|
64 |
+
max_steps = 12,
|
65 |
+
provide_run_summary = True,
|
66 |
+
description = """
|
67 |
+
A team member that will use various tools to search for websites, to visit websites and to parse and read information from websites.
|
68 |
+
Every question that requires to retrieve information from the internet to be answered must be answered by using the web_agent.
|
69 |
+
The gathered information to create the final answer will be reported back to the manager_agent.
|
70 |
+
""")
|
71 |
+
|
72 |
+
# Create Manager Agent
|
73 |
+
def create_manager_agent():
|
74 |
+
# Create Managed Agents
|
75 |
+
vision_agent = create_vision_agent()
|
76 |
+
web_agent = create_web_agent()
|
77 |
+
|
78 |
+
# Return Manager Agent
|
79 |
+
return CodeAgent(model = model,
|
80 |
+
tools = [FinalAnswerTool(),
|
81 |
+
PythonInterpreterTool(),
|
82 |
+
speech_to_text_tool,
|
83 |
+
youtube_captions_tool,
|
84 |
+
read_excel_tool],
|
85 |
+
name = 'manager_agent',
|
86 |
+
additional_authorized_imports = ['json',
|
87 |
+
'pandas',
|
88 |
+
're',
|
89 |
+
'bs4',
|
90 |
+
'requests',
|
91 |
+
'numpy',
|
92 |
+
'math',
|
93 |
+
'xml',
|
94 |
+
'scikit-learn'],
|
95 |
+
planning_interval = 3,
|
96 |
+
verbosity_level = 2,
|
97 |
+
stream_outputs = True,
|
98 |
+
max_steps = 12,
|
99 |
+
provide_run_summary = True,
|
100 |
+
managed_agents = [vision_agent, web_agent])
|
app.py
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import requests
|
4 |
+
import inspect
|
5 |
+
import pandas as pd
|
6 |
+
import gc
|
7 |
+
import json
|
8 |
+
|
9 |
+
# Custom
|
10 |
+
from tooling import (check_for_file_name_and_return_prompt,
|
11 |
+
get_manager_agent_prompt,
|
12 |
+
gradio_main_instructions)
|
13 |
+
from agents import create_manager_agent
|
14 |
+
|
15 |
+
|
16 |
+
# --- Constants ---
|
17 |
+
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
18 |
+
|
19 |
+
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
20 |
+
"""
|
21 |
+
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
22 |
+
and displays the results.
|
23 |
+
"""
|
24 |
+
# --- Determine HF Space Runtime URL and Repo URL ---
|
25 |
+
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
26 |
+
|
27 |
+
if profile:
|
28 |
+
username= f"{profile.username}"
|
29 |
+
print(f"User logged in: {username}")
|
30 |
+
else:
|
31 |
+
print("User not logged in.")
|
32 |
+
return "Please Login to Hugging Face with the button.", None
|
33 |
+
|
34 |
+
api_url = DEFAULT_API_URL
|
35 |
+
questions_url = f"{api_url}/questions"
|
36 |
+
submit_url = f"{api_url}/submit"
|
37 |
+
|
38 |
+
# 1. Instantiate Agent ( modify this part to create your agent)
|
39 |
+
try:
|
40 |
+
# Create Manager Agent
|
41 |
+
manager_agent = create_manager_agent()
|
42 |
+
|
43 |
+
except Exception as e:
|
44 |
+
print(f"Error instantiating agent: {e}")
|
45 |
+
return f"Error initializing agent: {e}", None
|
46 |
+
|
47 |
+
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
48 |
+
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
49 |
+
print(agent_code)
|
50 |
+
|
51 |
+
|
52 |
+
# 2. Fetch Questions
|
53 |
+
print(f"Fetching questions from: {questions_url}")
|
54 |
+
try:
|
55 |
+
response = requests.get(questions_url, timeout=15)
|
56 |
+
response.raise_for_status()
|
57 |
+
questions_data = response.json()
|
58 |
+
if not questions_data:
|
59 |
+
print("Fetched questions list is empty.")
|
60 |
+
return "Fetched questions list is empty or invalid format.", None
|
61 |
+
print(f"Fetched {len(questions_data)} questions.")
|
62 |
+
except requests.exceptions.RequestException as e:
|
63 |
+
print(f"Error fetching questions: {e}")
|
64 |
+
return f"Error fetching questions: {e}", None
|
65 |
+
except requests.exceptions.JSONDecodeError as e:
|
66 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
67 |
+
print(f"Response text: {response.text[:500]}")
|
68 |
+
return f"Error decoding server response for questions: {e}", None
|
69 |
+
except Exception as e:
|
70 |
+
print(f"An unexpected error occurred fetching questions: {e}")
|
71 |
+
return f"An unexpected error occurred fetching questions: {e}", None
|
72 |
+
|
73 |
+
|
74 |
+
# 3. Run your Agent
|
75 |
+
results_log = []
|
76 |
+
answers_payload = []
|
77 |
+
print(f"Running agent on {len(questions_data)} questions...")
|
78 |
+
for index, item in enumerate(questions_data):
|
79 |
+
print(f"Running question {index} {item.get('question')}")
|
80 |
+
|
81 |
+
task_id = item.get("task_id")
|
82 |
+
question_text = item.get("question")
|
83 |
+
file_name = item.get("file_name")
|
84 |
+
|
85 |
+
# File Check
|
86 |
+
file_prompt = check_for_file_name_and_return_prompt(file_name)
|
87 |
+
|
88 |
+
# File Download
|
89 |
+
if file_name != '':
|
90 |
+
# GET /files/{task_id}: Download a specific file associated with a given task ID.
|
91 |
+
files_url = f"{api_url}/files/{task_id}"
|
92 |
+
print(f"Fetching files for task_id: {task_id}")
|
93 |
+
try:
|
94 |
+
response = requests.get(files_url, stream=True, timeout=30)
|
95 |
+
response.raise_for_status()
|
96 |
+
|
97 |
+
# Save file to disk
|
98 |
+
with open(file_name, 'wb') as f:
|
99 |
+
for chunk in response.iter_content(chunk_size=8192):
|
100 |
+
if chunk: # filter out keep-alive chunks
|
101 |
+
f.write(chunk)
|
102 |
+
print(f"File '{file_name}' downloaded and saved successfully.")
|
103 |
+
|
104 |
+
except requests.exceptions.RequestException as e:
|
105 |
+
print(f"Request error while fetching files: {e}")
|
106 |
+
return f"Request error while fetching files: {e}", None
|
107 |
+
except Exception as e:
|
108 |
+
print(f"An unexpected error occurred while saving the file: {e}")
|
109 |
+
return f"An unexpected error occurred while saving the file: {e}", None
|
110 |
+
|
111 |
+
|
112 |
+
################################################################################
|
113 |
+
###### RUN MANAGER AGENT
|
114 |
+
################################################################################
|
115 |
+
if not task_id or question_text is None:
|
116 |
+
print(f"Skipping item with missing task_id or question: {item}")
|
117 |
+
continue
|
118 |
+
try:
|
119 |
+
# Run Manager Agent
|
120 |
+
submitted_answer = manager_agent.run(get_manager_agent_prompt(question_text, file_prompt))
|
121 |
+
|
122 |
+
# Basic verification...convert both to string...
|
123 |
+
if type(submitted_answer) is list or type(submitted_answer) is dict:
|
124 |
+
submitted_answer = str(submitted_answer)
|
125 |
+
|
126 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
127 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
128 |
+
except Exception as e:
|
129 |
+
print(f"Error running agent on task {task_id}: {e}")
|
130 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
131 |
+
|
132 |
+
#################################################################################
|
133 |
+
# Writing the list of dictionaries to a plain text file (overwriting the existing file)
|
134 |
+
with open('results_log.txt', 'w') as file:
|
135 |
+
json.dump(results_log, file, indent=4)
|
136 |
+
|
137 |
+
if not answers_payload:
|
138 |
+
print("Agent did not produce any answers to submit.")
|
139 |
+
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
140 |
+
|
141 |
+
|
142 |
+
# 4. Prepare Submission
|
143 |
+
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
144 |
+
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
145 |
+
print(status_update)
|
146 |
+
|
147 |
+
# 5. Submit
|
148 |
+
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
149 |
+
try:
|
150 |
+
response = requests.post(submit_url, json=submission_data, timeout=60)
|
151 |
+
response.raise_for_status()
|
152 |
+
result_data = response.json()
|
153 |
+
final_status = (
|
154 |
+
f"Submission Successful!\n"
|
155 |
+
f"User: {result_data.get('username')}\n"
|
156 |
+
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
157 |
+
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
158 |
+
f"Message: {result_data.get('message', 'No message received.')}"
|
159 |
+
)
|
160 |
+
print("Submission successful.")
|
161 |
+
results_df = pd.DataFrame(results_log)
|
162 |
+
return final_status, results_df
|
163 |
+
except requests.exceptions.HTTPError as e:
|
164 |
+
error_detail = f"Server responded with status {e.response.status_code}."
|
165 |
+
try:
|
166 |
+
error_json = e.response.json()
|
167 |
+
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
168 |
+
except requests.exceptions.JSONDecodeError:
|
169 |
+
error_detail += f" Response: {e.response.text[:500]}"
|
170 |
+
status_message = f"Submission Failed: {error_detail}"
|
171 |
+
print(status_message)
|
172 |
+
results_df = pd.DataFrame(results_log)
|
173 |
+
return status_message, results_df
|
174 |
+
except requests.exceptions.Timeout:
|
175 |
+
status_message = "Submission Failed: The request timed out."
|
176 |
+
print(status_message)
|
177 |
+
results_df = pd.DataFrame(results_log)
|
178 |
+
return status_message, results_df
|
179 |
+
except requests.exceptions.RequestException as e:
|
180 |
+
status_message = f"Submission Failed: Network error - {e}"
|
181 |
+
print(status_message)
|
182 |
+
results_df = pd.DataFrame(results_log)
|
183 |
+
return status_message, results_df
|
184 |
+
except Exception as e:
|
185 |
+
status_message = f"An unexpected error occurred during submission: {e}"
|
186 |
+
print(status_message)
|
187 |
+
results_df = pd.DataFrame(results_log)
|
188 |
+
return status_message, results_df
|
189 |
+
|
190 |
+
|
191 |
+
# --- Build Gradio Interface using Blocks ---
|
192 |
+
with gr.Blocks() as demo:
|
193 |
+
gr.Markdown("# Basic Agent Evaluation Runner")
|
194 |
+
gr.Markdown(gradio_main_instructions)
|
195 |
+
gr.LoginButton()
|
196 |
+
|
197 |
+
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
198 |
+
|
199 |
+
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
200 |
+
|
201 |
+
# Removed max_rows=10 from DataFrame constructor
|
202 |
+
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
203 |
+
|
204 |
+
run_button.click(fn = run_and_submit_all,
|
205 |
+
outputs = [status_output, results_table])
|
206 |
+
|
207 |
+
if __name__ == "__main__":
|
208 |
+
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
209 |
+
# Check for SPACE_HOST and SPACE_ID at startup for information
|
210 |
+
space_host_startup = os.getenv("SPACE_HOST")
|
211 |
+
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
212 |
+
|
213 |
+
if space_host_startup:
|
214 |
+
print(f"β
SPACE_HOST found: {space_host_startup}")
|
215 |
+
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
216 |
+
else:
|
217 |
+
print("βΉοΈ SPACE_HOST environment variable not found (running locally?).")
|
218 |
+
|
219 |
+
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
220 |
+
print(f"β
SPACE_ID found: {space_id_startup}")
|
221 |
+
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
222 |
+
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
223 |
+
else:
|
224 |
+
print("βΉοΈ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
225 |
+
|
226 |
+
print("-"*(60 + len(" App Starting ")) + "\n")
|
227 |
+
|
228 |
+
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
229 |
+
demo.launch(debug=True, share=False)
|
230 |
+
|
231 |
+
|
232 |
+
"""
|
233 |
+
Submission Failed: Server responded with status 422. Detail: [{'type': 'string_type', 'loc': ['body', 'answers', 13, 'submitted_answer', 'str'], 'msg': 'Input should be a valid string', 'input': ['45', '50', '67', '89']}, {'type': 'int_type', 'loc': ['body', 'answers', 13, 'submitted_answer', 'int'], 'msg': 'Input should be a valid integer', 'input': ['45', '50', '67', '89']}, {'type': 'float_type', 'loc': ['body', 'answers', 13, 'submitted_answer', 'float'], 'msg': 'Input should be a valid number', 'input': ['45', '50', '67', '89']}]
|
234 |
+
"""
|
requirements.txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio[oauth]
|
2 |
+
numpy
|
3 |
+
openpyxl
|
4 |
+
pandas
|
5 |
+
requests
|
6 |
+
smolagents[all]
|
7 |
+
autoawq
|
8 |
+
transformers==4.51.3
|
9 |
+
scikit-learn
|
10 |
+
wikipedia-api
|
11 |
+
num2words==0.5.14
|
12 |
+
yt-dlp
|
13 |
+
librosa
|
14 |
+
soundfile
|
tooling.py
ADDED
@@ -0,0 +1,302 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://github.com/huggingface/smolagents/blob/v1.17.0/src/smolagents/default_tools.py#L479
|
2 |
+
|
3 |
+
# Import Modules
|
4 |
+
import os
|
5 |
+
import pandas as pd
|
6 |
+
import yt_dlp
|
7 |
+
import re
|
8 |
+
|
9 |
+
# Smolagents
|
10 |
+
import torch
|
11 |
+
from transformers import AutoProcessor, AutoModelForVision2Seq
|
12 |
+
from smolagents import (tool)
|
13 |
+
from smolagents.tools import PipelineTool
|
14 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
15 |
+
import librosa
|
16 |
+
import numpy as np
|
17 |
+
|
18 |
+
|
19 |
+
gradio_main_instructions = """
|
20 |
+
**Instructions:**
|
21 |
+
|
22 |
+
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
23 |
+
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
24 |
+
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
25 |
+
|
26 |
+
---
|
27 |
+
**Disclaimers:**
|
28 |
+
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
29 |
+
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
30 |
+
"""
|
31 |
+
|
32 |
+
def get_manager_agent_prompt(question_text, file_prompt):
|
33 |
+
return f"""
|
34 |
+
# Objective:
|
35 |
+
Your task is to analyze the following question and to provide a final answer.
|
36 |
+
|
37 |
+
{file_prompt}
|
38 |
+
|
39 |
+
# Question:
|
40 |
+
{question_text}
|
41 |
+
|
42 |
+
# Final Answer requirements:
|
43 |
+
The final answer should be a number OR as few words as possible OR a comma separated list of numbers and/or strings.
|
44 |
+
If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise.
|
45 |
+
If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise.
|
46 |
+
If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
|
47 |
+
|
48 |
+
!! Note !! If the question itself mentions specific instructions for how the answer should be formatted than make absolutely sure those are also applied to the answer!!
|
49 |
+
"""
|
50 |
+
|
51 |
+
def check_for_file_name_and_return_prompt(file_name):
|
52 |
+
if file_name == '':
|
53 |
+
return 'For this question there is no file with additional information available.'
|
54 |
+
else:
|
55 |
+
# Detect File Type
|
56 |
+
if '.xlsx' in file_name:
|
57 |
+
file_type = 'Excel Sheet'
|
58 |
+
return f"""
|
59 |
+
# File Information
|
60 |
+
For this question there is a file named "{file_name}" with additional information related to the question available.
|
61 |
+
The specific file is of type: {file_type}.
|
62 |
+
The file is already downloaded and available for use.
|
63 |
+
Load the file based on the file name with the pandas python library or use the read_excel_tool. Choose what works best for you.
|
64 |
+
Carefully load the file and use its content in the best and correct way possible to help you answer the question."""
|
65 |
+
elif '.csv' in file_name:
|
66 |
+
file_type = 'CSV File'
|
67 |
+
return f"""
|
68 |
+
# File Information
|
69 |
+
For this question there is a file named "{file_name}" with additional information related to the question available.
|
70 |
+
The specific file is of type: {file_type}.
|
71 |
+
The file is already downloaded and available for use.
|
72 |
+
Load the file based on the file name with the pandas python library.
|
73 |
+
Carefully load the file and use its content in the best and correct way possible to help you answer the question."""
|
74 |
+
elif '.mp3' in file_name:
|
75 |
+
file_type = 'MP3 Audio File'
|
76 |
+
return f"""
|
77 |
+
# File Information
|
78 |
+
For this question there is a file named '{file_name}' with additional information related to the question available.
|
79 |
+
The specific file is of type: {file_type}.
|
80 |
+
The file is already downloaded and available for use with the available tools to load the specific file.
|
81 |
+
Carefully load the file and use its content in the best and correct way possible to help you answer the question.
|
82 |
+
If the file name mentioned specifically in the question is different from the following file name '{file_name}' then keep using the following file name: '{file_name}'.
|
83 |
+
"""
|
84 |
+
elif '.png' in file_name:
|
85 |
+
file_type = 'PNG Image File'
|
86 |
+
return f"""
|
87 |
+
# File Information
|
88 |
+
For this question there is a file named "{file_name}" with additional information related to the question available.
|
89 |
+
The specific file is of type: {file_type}.
|
90 |
+
The file is already downloaded and available for use. Use the 'vision_agent' to load the file and answer the question.
|
91 |
+
Make sure to pass the file name and question!!"""
|
92 |
+
elif '.py' in file_name:
|
93 |
+
file_type = 'Python Script File'
|
94 |
+
with open(file_name, "r") as py_file:
|
95 |
+
python_script_contents = py_file.read()
|
96 |
+
return f"""
|
97 |
+
# File Information
|
98 |
+
For this question there is a file named '{file_name}' with additional information related to the question available.
|
99 |
+
The specific file is of type: {file_type}.
|
100 |
+
The file is already downloaded and available for use with the available tools to load the specific file.
|
101 |
+
|
102 |
+
As an extra service below is the content of the Python Script File also visible.
|
103 |
+
|
104 |
+
# Python Script File Content
|
105 |
+
```
|
106 |
+
{python_script_contents}
|
107 |
+
```
|
108 |
+
"""
|
109 |
+
|
110 |
+
# Create Models for Vision Tool
|
111 |
+
device = "cuda"
|
112 |
+
vision_model_path = "ibm-granite/granite-vision-3.2-2b"
|
113 |
+
vision_processor = AutoProcessor.from_pretrained(vision_model_path)
|
114 |
+
vision_model = AutoModelForVision2Seq.from_pretrained(vision_model_path,
|
115 |
+
torch_dtype = torch.bfloat16).to(device)
|
116 |
+
|
117 |
+
@tool
|
118 |
+
def vision_language_tool(question: str, file_name: str) -> str:
|
119 |
+
"""
|
120 |
+
This vision language tool will load any image based on the provided file_name and will answer the question that is provided.
|
121 |
+
Args:
|
122 |
+
question: A string that contains the question that we need to answer about the image.
|
123 |
+
file_name: A string containing the image file name.
|
124 |
+
Returns:
|
125 |
+
A string containing the answer to the question.
|
126 |
+
"""
|
127 |
+
|
128 |
+
prompt = f"""
|
129 |
+
You are provided with an image.
|
130 |
+
|
131 |
+
Answer the following question about the image very specifically and in detail:
|
132 |
+
|
133 |
+
{question}"""
|
134 |
+
print(f"vlt: {os.listdir('./')}")
|
135 |
+
conversation = [
|
136 |
+
{
|
137 |
+
"role": "user",
|
138 |
+
"content": [{"type": "image", "url": file_name}, {"type": "text", "text": prompt}],
|
139 |
+
},
|
140 |
+
]
|
141 |
+
inputs = vision_processor.apply_chat_template(conversation,
|
142 |
+
add_generation_prompt = True,
|
143 |
+
tokenize = True,
|
144 |
+
return_dict = True,
|
145 |
+
return_tensors = "pt").to(device)
|
146 |
+
|
147 |
+
|
148 |
+
# autoregressively complete prompt
|
149 |
+
model_output = vision_model.generate(**inputs,
|
150 |
+
max_new_tokens = 1024,
|
151 |
+
temperature = 0.2,
|
152 |
+
do_sample = True,
|
153 |
+
top_p = 0.975,
|
154 |
+
top_k = 75,
|
155 |
+
min_p = 0.05,
|
156 |
+
repetition_penalty = 1.15)
|
157 |
+
answer = vision_processor.decode(model_output[0], skip_special_tokens = True)
|
158 |
+
|
159 |
+
return answer
|
160 |
+
|
161 |
+
@tool
|
162 |
+
def speech_to_text_tool(file_name: str) -> str:
|
163 |
+
"""
|
164 |
+
This speech to text tool will use the provided file name to load an mp3 audio file and and output a transcription of the audio file as a text string.
|
165 |
+
Args:
|
166 |
+
file_name: A string containing the audio file name.
|
167 |
+
Returns:
|
168 |
+
A string containing the transcribed text of the audio file.
|
169 |
+
"""
|
170 |
+
|
171 |
+
# Load model and processor
|
172 |
+
model_name = "openai/whisper-small"
|
173 |
+
processor = WhisperProcessor.from_pretrained(model_name)
|
174 |
+
model = WhisperForConditionalGeneration.from_pretrained(model_name).to('cpu')
|
175 |
+
model.config.forced_decoder_ids = None
|
176 |
+
|
177 |
+
# Load and resample audio to 16kHz mono
|
178 |
+
speech_array, sampling_rate = librosa.load(file_name, sr = 16000, mono=True)
|
179 |
+
|
180 |
+
# Define chunk size: 30 seconds at 16kHz = 480000 samples
|
181 |
+
chunk_size = 30 * 16000 # 480000
|
182 |
+
|
183 |
+
# Split into chunks
|
184 |
+
chunks = [
|
185 |
+
speech_array[i:i+chunk_size]
|
186 |
+
for i in range(0, len(speech_array), chunk_size)
|
187 |
+
]
|
188 |
+
|
189 |
+
# Pad last chunk if it's shorter
|
190 |
+
if len(chunks[-1]) < chunk_size:
|
191 |
+
chunks[-1] = np.pad(chunks[-1], (0, chunk_size - len(chunks[-1])))
|
192 |
+
|
193 |
+
# Prepare input features in batch
|
194 |
+
input_features = processor(chunks, sampling_rate=16000, return_tensors="pt").input_features
|
195 |
+
|
196 |
+
# Generate predictions in batch
|
197 |
+
predicted_ids = model.generate(input_features)
|
198 |
+
|
199 |
+
# Decode all chunks and concatenate
|
200 |
+
transcribed_texts = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
201 |
+
full_transcription = " ".join([t.strip() for t in transcribed_texts])
|
202 |
+
|
203 |
+
return full_transcription
|
204 |
+
|
205 |
+
@tool
|
206 |
+
def youtube_captions_tool(youtube_video_url: str) -> str:
|
207 |
+
"""
|
208 |
+
This youtube captions tool will use a youtube video url to retrieve the captions and output them as a string containing the conversations in the video.
|
209 |
+
Args:
|
210 |
+
youtube_video_url: A string containing the url for a youtube video from which the captions will be retrieved.
|
211 |
+
Returns:
|
212 |
+
A string containing the captions of the youtube video url.
|
213 |
+
"""
|
214 |
+
|
215 |
+
outtmpl = "caption.%(ext)s"
|
216 |
+
ydl_opts = {
|
217 |
+
'writesubtitles': True,
|
218 |
+
'writeautomaticsub': True,
|
219 |
+
'subtitleslangs': ['en'],
|
220 |
+
'skip_download': True,
|
221 |
+
'outtmpl': outtmpl,
|
222 |
+
'quiet': True
|
223 |
+
}
|
224 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
225 |
+
info = ydl.extract_info(youtube_video_url, download=True)
|
226 |
+
vtt_filename = None
|
227 |
+
for ext in ('en.vtt', 'en-US.vtt'):
|
228 |
+
if os.path.isfile(f'caption.{ext}'):
|
229 |
+
vtt_filename = f'caption.{ext}'
|
230 |
+
break
|
231 |
+
if not vtt_filename:
|
232 |
+
raise FileNotFoundError("Could not find English captions (.vtt) after download.")
|
233 |
+
with open(vtt_filename, encoding='utf-8') as f:
|
234 |
+
vtt_content = f.read()
|
235 |
+
os.remove(vtt_filename)
|
236 |
+
|
237 |
+
# Remove headers and unnecessary metadata
|
238 |
+
vtt_content = re.sub(r'WEBVTT.*?\n', '', vtt_content, flags=re.DOTALL)
|
239 |
+
vtt_content = re.sub(r'^Kind:.*\n?', '', vtt_content, flags=re.MULTILINE)
|
240 |
+
vtt_content = re.sub(r'^Language:.*\n?', '', vtt_content, flags=re.MULTILINE)
|
241 |
+
vtt_content = re.sub(r'^NOTE.*\n?', '', vtt_content, flags=re.MULTILINE)
|
242 |
+
vtt_content = re.sub(r'X-TIMESTAMP.*', '', vtt_content)
|
243 |
+
vtt_content = re.sub(r'\[.*?\]', '', vtt_content)
|
244 |
+
vtt_content = re.sub(r'<.*?>', '', vtt_content) # Remove tags like <c> and <00:00:01.000>
|
245 |
+
|
246 |
+
# Split by lines, remove lines that are timestamps, metadata, or blank
|
247 |
+
cleaned_lines = []
|
248 |
+
last_line = None
|
249 |
+
for line in vtt_content.splitlines():
|
250 |
+
line = line.strip()
|
251 |
+
if not line:
|
252 |
+
continue # Skip blank lines
|
253 |
+
if re.match(r'^\d{2}:\d{2}:\d{2}\.\d{3} -->', line):
|
254 |
+
continue # Skip timestamps
|
255 |
+
if re.match(r'^\d+$', line):
|
256 |
+
continue # Skip sequence numbers
|
257 |
+
if 'align:' in line or 'position:' in line:
|
258 |
+
# Remove align/position metadata but keep the actual text
|
259 |
+
line = re.sub(r'align:[^\s]+', '', line)
|
260 |
+
line = re.sub(r'position:[^\s]+', '', line)
|
261 |
+
line = line.strip()
|
262 |
+
if not line:
|
263 |
+
continue
|
264 |
+
if line == last_line:
|
265 |
+
continue # Deduplicate consecutive lines
|
266 |
+
cleaned_lines.append(line)
|
267 |
+
last_line = line
|
268 |
+
captions = '\n'.join(cleaned_lines).strip()
|
269 |
+
|
270 |
+
return captions
|
271 |
+
|
272 |
+
@tool
|
273 |
+
def read_excel_tool(file_name: str) -> str:
|
274 |
+
"""
|
275 |
+
This read excel tool will use the provided file name to load an Excel file into a Pandas DataFrame and output the various information as a text string.
|
276 |
+
Args:
|
277 |
+
file_name: A string containing the Excel file name.
|
278 |
+
Returns:
|
279 |
+
A string containing the structured output from a Pandas DataFrame after reading the Excel file.
|
280 |
+
"""
|
281 |
+
# Read Excel File
|
282 |
+
df = pd.read_excel(file_name)
|
283 |
+
|
284 |
+
# Excel String
|
285 |
+
excel_string = f"""
|
286 |
+
# Summary
|
287 |
+
The text below contains the information from the Excel File that has been loaded into a Pandas DataFrame.
|
288 |
+
|
289 |
+
## DataFrame Shape
|
290 |
+
{df.shape}
|
291 |
+
|
292 |
+
## DataFrame Columns
|
293 |
+
{df.columns}
|
294 |
+
|
295 |
+
## DataFrame Describe
|
296 |
+
{df.describe}
|
297 |
+
|
298 |
+
## DataFrame Head
|
299 |
+
{df.head(25)}
|
300 |
+
"""
|
301 |
+
|
302 |
+
return excel_string
|