Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import pickle | |
| import math | |
| import shutil | |
| import numpy as np | |
| import lmdb as lmdb | |
| import textgrid as tg | |
| import pandas as pd | |
| import torch | |
| import glob | |
| import json | |
| from termcolor import colored | |
| from loguru import logger | |
| from collections import defaultdict | |
| from torch.utils.data import Dataset | |
| import torch.distributed as dist | |
| #import pyarrow | |
| import pickle | |
| import librosa | |
| import smplx | |
| import glob | |
| from .build_vocab import Vocab | |
| from .utils.audio_features import Wav2Vec2Model | |
| from .data_tools import joints_list | |
| from .utils import rotation_conversions as rc | |
| from .utils import other_tools | |
| # ACCAD 120 | |
| # BioMotionLab_NTroje 120 | |
| # CMU 很复杂 | |
| # EKUT 100 | |
| # Eyes_Japan_Dataset 很复杂 | |
| # HumanEva 很复杂 | |
| # KIT 100 | |
| # MPI_HDM05 120 | |
| # MPI_Limits 120 | |
| # MPI_mosh 很复杂 | |
| # SFU 120 | |
| # SSM_synced 很复杂 | |
| # TCD_handMocap 很复杂 | |
| # TotalCapture 60 | |
| # Transitions_mocap 120 | |
| all_sequences = [ | |
| 'ACCAD', | |
| 'BioMotionLab_NTroje', | |
| 'CMU', | |
| 'EKUT', | |
| 'Eyes_Japan_Dataset', | |
| 'HumanEva', | |
| 'KIT', | |
| 'MPI_HDM05', | |
| 'MPI_Limits', | |
| 'MPI_mosh', | |
| 'SFU', | |
| 'SSM_synced', | |
| 'TCD_handMocap', | |
| 'TotalCapture', | |
| 'Transitions_mocap', | |
| ] | |
| amass_test_split = ['Transitions_mocap', 'SSM_synced'] | |
| amass_vald_split = ['HumanEva', 'MPI_HDM05', 'SFU', 'MPI_mosh'] | |
| amass_train_split = ['BioMotionLab_NTroje', 'Eyes_Japan_Dataset', 'TotalCapture', 'KIT', 'ACCAD', 'CMU', 'MPI_Limits', | |
| 'TCD_handMocap', 'EKUT'] | |
| # 上面这些spilt方式是MOTION CLIP的,但是由于motionx中的framerate处理有问题,我先暂且只挑部分数据集进行训练 | |
| # 这些都是120fps的 | |
| # amass_test_split = ['SFU'] | |
| # amass_vald_split = ['MPI_Limits'] | |
| # amass_train_split = ['BioMotionLab_NTroje', 'MPI_HDM05', 'ACCAD','Transitions_mocap'] | |
| amass_splits = { | |
| 'test': amass_test_split, | |
| 'val': amass_vald_split, | |
| 'train': amass_train_split | |
| } | |
| # assert len(amass_splits['train'] + amass_splits['test'] + amass_splits['vald']) == len(all_sequences) == 15 | |
| class CustomDataset(Dataset): | |
| def __init__(self, args, loader_type, augmentation=None, kwargs=None, build_cache=True): | |
| self.args = args | |
| self.loader_type = loader_type | |
| self.rank = 0 | |
| self.ori_stride = self.args.stride | |
| self.ori_length = self.args.pose_length | |
| self.alignment = [0,0] # for trinity | |
| self.ori_joint_list = joints_list[self.args.ori_joints] | |
| self.tar_joint_list = joints_list[self.args.tar_joints] | |
| if 'smplx' in self.args.pose_rep: | |
| self.joint_mask = np.zeros(len(list(self.ori_joint_list.keys()))*3) | |
| self.joints = len(list(self.tar_joint_list.keys())) | |
| for joint_name in self.tar_joint_list: | |
| self.joint_mask[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1 | |
| else: | |
| self.joints = len(list(self.ori_joint_list.keys()))+1 | |
| self.joint_mask = np.zeros(self.joints*3) | |
| for joint_name in self.tar_joint_list: | |
| if joint_name == "Hips": | |
| self.joint_mask[3:6] = 1 | |
| else: | |
| self.joint_mask[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1 | |
| # select trainable joints | |
| split_rule = pd.read_csv(args.data_path+"train_test_split.csv") | |
| self.selected_file = split_rule.loc[(split_rule['type'] == loader_type) & (split_rule['id'].str.split("_").str[0].astype(int).isin(self.args.training_speakers))] | |
| if args.additional_data and loader_type == 'train': | |
| split_b = split_rule.loc[(split_rule['type'] == 'additional') & (split_rule['id'].str.split("_").str[0].astype(int).isin(self.args.training_speakers))] | |
| #self.selected_file = split_rule.loc[(split_rule['type'] == 'additional') & (split_rule['id'].str.split("_").str[0].astype(int).isin(self.args.training_speakers))] | |
| self.selected_file = pd.concat([self.selected_file, split_b]) | |
| if self.selected_file.empty: | |
| logger.warning(f"{loader_type} is empty for speaker {self.args.training_speakers}, use train set 0-8 instead") | |
| self.selected_file = split_rule.loc[(split_rule['type'] == 'train') & (split_rule['id'].str.split("_").str[0].astype(int).isin(self.args.training_speakers))] | |
| self.selected_file = self.selected_file.iloc[0:8] | |
| self.data_dir = args.data_path | |
| self.use_amass = args.use_amass | |
| self.beatx_during_time = 0 | |
| self.amass_during_time = 0 | |
| if loader_type == "test": | |
| self.args.multi_length_training = [1.0] | |
| self.max_length = int(args.pose_length * self.args.multi_length_training[-1]) | |
| self.max_audio_pre_len = math.floor(args.pose_length / args.pose_fps * self.args.audio_sr) | |
| if self.max_audio_pre_len > self.args.test_length*self.args.audio_sr: | |
| self.max_audio_pre_len = self.args.test_length*self.args.audio_sr | |
| preloaded_dir = self.args.root_path + self.args.cache_path + loader_type + f"/{args.pose_rep}_cache" | |
| if self.args.beat_align: | |
| if not os.path.exists(args.data_path+f"weights/mean_vel_{args.pose_rep}.npy"): | |
| self.calculate_mean_velocity(args.data_path+f"weights/mean_vel_{args.pose_rep}.npy") | |
| self.avg_vel = np.load(args.data_path+f"weights/mean_vel_{args.pose_rep}.npy") | |
| if build_cache and self.rank == 0: | |
| self.build_cache(preloaded_dir) | |
| self.lmdb_env = lmdb.open(preloaded_dir, readonly=True, lock=False) | |
| with self.lmdb_env.begin() as txn: | |
| self.n_samples = txn.stat()["entries"] | |
| self.norm = True | |
| self.mean = np.load('./mean_std/beatx_2_330_mean.npy') | |
| self.std = np.load('./mean_std/beatx_2_330_std.npy') | |
| self.trans_mean = np.load('./mean_std/beatx_2_trans_mean.npy') | |
| self.trans_std = np.load('./mean_std/beatx_2_trans_std.npy') | |
| def load_amass(self,data): | |
| ## 这个是用来 | |
| # 修改amass数据里面的朝向,原本在blender里面是Z轴向上,目标是Y轴向上,当时面向目前没改 | |
| data_dict = {key: data[key] for key in data} | |
| frames = data_dict['poses'].shape[0] | |
| b = data_dict['poses'][...,:3] | |
| b = rc.axis_angle_to_matrix(torch.from_numpy(b)) | |
| rot_matrix = np.array([[1.0, 0.0, 0.0], [0.0 , 0.0, 1.0], [0.0, -1.0, 0.0]]) | |
| c = np.einsum('ij,kjl->kil',rot_matrix,b) | |
| c = rc.matrix_to_axis_angle(torch.from_numpy(c)) | |
| data_dict['poses'][...,:3] = c | |
| trans_matrix1 = np.array([[1.0, 0.0, 0.0], [0.0 , 0.0, -1.0], [0.0, 1.0, 0.0]]) | |
| data_dict['trans'] = np.einsum("bi,ij->bj",data_dict['trans'],trans_matrix1) | |
| betas300 = np.zeros(300) | |
| betas300[:16] = data_dict['betas'] | |
| data_dict['betas'] = betas300 | |
| data_dict["expressions"] = np.zeros((frames,100)) | |
| return data_dict | |
| def calculate_mean_velocity(self, save_path): | |
| self.smplx = smplx.create( | |
| self.args.data_path_1+"smplx_models/", | |
| model_type='smplx', | |
| gender='NEUTRAL_2020', | |
| use_face_contour=False, | |
| num_betas=300, | |
| num_expression_coeffs=100, | |
| ext='npz', | |
| use_pca=False, | |
| ).cuda().eval() | |
| dir_p = self.data_dir + self.args.pose_rep + "/" | |
| all_list = [] | |
| from tqdm import tqdm | |
| for tar in tqdm(os.listdir(dir_p)): | |
| if tar.endswith(".npz"): | |
| m_data = np.load(dir_p+tar, allow_pickle=True) | |
| betas, poses, trans, exps = m_data["betas"], m_data["poses"], m_data["trans"], m_data["expressions"] | |
| n, c = poses.shape[0], poses.shape[1] | |
| betas = betas.reshape(1, 300) | |
| betas = np.tile(betas, (n, 1)) | |
| betas = torch.from_numpy(betas).cuda().float() | |
| poses = torch.from_numpy(poses.reshape(n, c)).cuda().float() | |
| exps = torch.from_numpy(exps.reshape(n, 100)).cuda().float() | |
| trans = torch.from_numpy(trans.reshape(n, 3)).cuda().float() | |
| max_length = 128 | |
| s, r = n//max_length, n%max_length | |
| #print(n, s, r) | |
| all_tensor = [] | |
| for i in range(s): | |
| with torch.no_grad(): | |
| joints = self.smplx( | |
| betas=betas[i*max_length:(i+1)*max_length], | |
| transl=trans[i*max_length:(i+1)*max_length], | |
| expression=exps[i*max_length:(i+1)*max_length], | |
| jaw_pose=poses[i*max_length:(i+1)*max_length, 66:69], | |
| global_orient=poses[i*max_length:(i+1)*max_length,:3], | |
| body_pose=poses[i*max_length:(i+1)*max_length,3:21*3+3], | |
| left_hand_pose=poses[i*max_length:(i+1)*max_length,25*3:40*3], | |
| right_hand_pose=poses[i*max_length:(i+1)*max_length,40*3:55*3], | |
| return_verts=True, | |
| return_joints=True, | |
| leye_pose=poses[i*max_length:(i+1)*max_length, 69:72], | |
| reye_pose=poses[i*max_length:(i+1)*max_length, 72:75], | |
| )['joints'][:, :55, :].reshape(max_length, 55*3) | |
| all_tensor.append(joints) | |
| if r != 0: | |
| with torch.no_grad(): | |
| joints = self.smplx( | |
| betas=betas[s*max_length:s*max_length+r], | |
| transl=trans[s*max_length:s*max_length+r], | |
| expression=exps[s*max_length:s*max_length+r], | |
| jaw_pose=poses[s*max_length:s*max_length+r, 66:69], | |
| global_orient=poses[s*max_length:s*max_length+r,:3], | |
| body_pose=poses[s*max_length:s*max_length+r,3:21*3+3], | |
| left_hand_pose=poses[s*max_length:s*max_length+r,25*3:40*3], | |
| right_hand_pose=poses[s*max_length:s*max_length+r,40*3:55*3], | |
| return_verts=True, | |
| return_joints=True, | |
| leye_pose=poses[s*max_length:s*max_length+r, 69:72], | |
| reye_pose=poses[s*max_length:s*max_length+r, 72:75], | |
| )['joints'][:, :55, :].reshape(r, 55*3) | |
| all_tensor.append(joints) | |
| joints = torch.cat(all_tensor, axis=0) | |
| joints = joints.permute(1, 0) | |
| dt = 1/30 | |
| # first steps is forward diff (t+1 - t) / dt | |
| init_vel = (joints[:, 1:2] - joints[:, :1]) / dt | |
| # middle steps are second order (t+1 - t-1) / 2dt | |
| middle_vel = (joints[:, 2:] - joints[:, 0:-2]) / (2 * dt) | |
| # last step is backward diff (t - t-1) / dt | |
| final_vel = (joints[:, -1:] - joints[:, -2:-1]) / dt | |
| #print(joints.shape, init_vel.shape, middle_vel.shape, final_vel.shape) | |
| vel_seq = torch.cat([init_vel, middle_vel, final_vel], dim=1).permute(1, 0).reshape(n, 55, 3) | |
| #print(vel_seq.shape) | |
| #.permute(1, 0).reshape(n, 55, 3) | |
| vel_seq_np = vel_seq.cpu().numpy() | |
| vel_joints_np = np.linalg.norm(vel_seq_np, axis=2) # n * 55 | |
| all_list.append(vel_joints_np) | |
| avg_vel = np.mean(np.concatenate(all_list, axis=0),axis=0) # 55 | |
| np.save(save_path, avg_vel) | |
| def build_cache(self, preloaded_dir): | |
| logger.info(f"Audio bit rate: {self.args.audio_fps}") | |
| logger.info("Reading data '{}'...".format(self.data_dir)) | |
| logger.info("Creating the dataset cache...") | |
| if self.args.new_cache: | |
| if os.path.exists(preloaded_dir): | |
| shutil.rmtree(preloaded_dir) | |
| if os.path.exists(preloaded_dir): | |
| logger.info("Found the cache {}".format(preloaded_dir)) | |
| elif self.loader_type == "test": | |
| self.cache_generation( | |
| preloaded_dir, True, | |
| 0, 0, | |
| is_test=True) | |
| else: | |
| self.cache_generation( | |
| preloaded_dir, self.args.disable_filtering, | |
| self.args.clean_first_seconds, self.args.clean_final_seconds, | |
| is_test=False) | |
| logger.info(f"BEATX during time is {self.beatx_during_time}s !") | |
| logger.info(f"AMASS during time is {self.amass_during_time}s !") | |
| ## 对于BEATX train ,val ,test: 69800s ,7695s, 18672s ,总计 26.7h | |
| ## | |
| def __len__(self): | |
| return self.n_samples | |
| def cache_generation(self, out_lmdb_dir, disable_filtering, clean_first_seconds, clean_final_seconds, is_test=False): | |
| # if "wav2vec2" in self.args.audio_rep: | |
| # self.wav2vec_model = Wav2Vec2Model.from_pretrained(f"{self.args.data_path_1}/hub/transformer/wav2vec2-base-960h") | |
| # self.wav2vec_model.feature_extractor._freeze_parameters() | |
| # self.wav2vec_model = self.wav2vec_model.cuda() | |
| # self.wav2vec_model.eval() | |
| self.n_out_samples = 0 | |
| # create db for samples | |
| if not os.path.exists(out_lmdb_dir): os.makedirs(out_lmdb_dir) | |
| dst_lmdb_env = lmdb.open(out_lmdb_dir, map_size= int(1024 ** 3 * 50))# 50G | |
| n_filtered_out = defaultdict(int) | |
| for index, file_name in self.selected_file.iterrows(): | |
| f_name = file_name["id"] | |
| ext = ".npz" if "smplx" in self.args.pose_rep else ".bvh" | |
| pose_file = self.data_dir + self.args.pose_rep + "/" + f_name + ext | |
| pose_each_file = [] | |
| trans_each_file = [] | |
| trans_v_each_file = [] | |
| shape_each_file = [] | |
| audio_each_file = [] | |
| facial_each_file = [] | |
| word_each_file = [] | |
| emo_each_file = [] | |
| sem_each_file = [] | |
| vid_each_file = [] | |
| id_pose = f_name #1_wayne_0_1_1 | |
| logger.info(colored(f"# ---- Building cache for Pose {id_pose} ---- #", "blue")) | |
| if "smplx" in self.args.pose_rep: | |
| pose_data = np.load(pose_file, allow_pickle=True) | |
| assert 30%self.args.pose_fps == 0, 'pose_fps should be an aliquot part of 30' | |
| stride = int(30/self.args.pose_fps) | |
| pose_each_file = pose_data["poses"][::stride] * self.joint_mask | |
| pose_each_file = pose_each_file[:, self.joint_mask.astype(bool)] | |
| # print(pose_each_file.shape) | |
| self.beatx_during_time += pose_each_file.shape[0]/30 | |
| trans_each_file = pose_data["trans"][::stride] | |
| trans_each_file[:,0] = trans_each_file[:,0] - trans_each_file[0,0] | |
| trans_each_file[:,2] = trans_each_file[:,2] - trans_each_file[0,2] | |
| trans_v_each_file = np.zeros_like(trans_each_file) | |
| trans_v_each_file[1:,0] = trans_each_file[1:,0] - trans_each_file[:-1,0] | |
| trans_v_each_file[0,0] = trans_v_each_file[1,0] | |
| trans_v_each_file[1:,2] = trans_each_file[1:,2] - trans_each_file[:-1,2] | |
| trans_v_each_file[0,2] = trans_v_each_file[1,2] | |
| trans_v_each_file[:,1] = trans_each_file[:,1] | |
| shape_each_file = np.repeat(pose_data["betas"].reshape(1, 300), pose_each_file.shape[0], axis=0) | |
| if self.args.facial_rep is not None: | |
| logger.info(f"# ---- Building cache for Facial {id_pose} and Pose {id_pose} ---- #") | |
| facial_each_file = pose_data["expressions"][::stride] | |
| if self.args.facial_norm: | |
| facial_each_file = (facial_each_file - self.mean_facial) / self.std_facial | |
| if self.args.id_rep is not None: | |
| vid_each_file = np.repeat(np.array(int(f_name.split("_")[0])-1).reshape(1, 1), pose_each_file.shape[0], axis=0) | |
| filtered_result = self._sample_from_clip( | |
| dst_lmdb_env, | |
| pose_each_file, trans_each_file,trans_v_each_file, shape_each_file, | |
| vid_each_file, | |
| disable_filtering, clean_first_seconds, clean_final_seconds, is_test, | |
| ) | |
| for type in filtered_result.keys(): | |
| n_filtered_out[type] += filtered_result[type] | |
| if self.args.use_amass: | |
| amass_dir = '/mnt/fu09a/chenbohong/PantoMatrix/scripts/EMAGE_2024/datasets/AMASS_SMPLX' | |
| for dataset in amass_splits[self.loader_type]: | |
| search_path = os.path.join(amass_dir,dataset, '**', '*.npz') | |
| npz_files = glob.glob(search_path, recursive=True) | |
| for index, file_name in enumerate(npz_files): | |
| f_name = file_name.split('/')[-1] | |
| ext = ".npz" if "smplx" in self.args.pose_rep else ".bvh" | |
| pose_file = file_name | |
| pose_each_file = [] | |
| trans_each_file = [] | |
| trans_v_each_file = [] | |
| shape_each_file = [] | |
| audio_each_file = [] | |
| facial_each_file = [] | |
| word_each_file = [] | |
| emo_each_file = [] | |
| sem_each_file = [] | |
| vid_each_file = [] | |
| id_pose = f_name #1_wayne_0_1_1 | |
| logger.info(colored(f"# ---- Building cache for Pose {id_pose} ---- #", "blue")) | |
| if "smplx" in self.args.pose_rep: | |
| pose_data = np.load(pose_file, allow_pickle=True) | |
| if len(pose_data.files)==6: | |
| logger.info(colored(f"# ---- state file ---- #", "red")) | |
| continue | |
| assert 30%self.args.pose_fps == 0, 'pose_fps should be an aliquot part of 30' | |
| pose_each_file = self.load_amass(pose_data) | |
| fps = pose_data['mocap_frame_rate'] | |
| stride =round(fps/30) | |
| pose_each_file = pose_data["poses"][::stride] * self.joint_mask | |
| pose_each_file = pose_each_file[:, self.joint_mask.astype(bool)] | |
| trans_each_file = pose_data["trans"][::stride] | |
| trans_each_file[:,0] = trans_each_file[:,0] - trans_each_file[0,0] | |
| trans_each_file[:,2] = trans_each_file[:,2] - trans_each_file[0,2] | |
| trans_v_each_file = np.zeros_like(trans_each_file) | |
| trans_v_each_file[1:,0] = trans_each_file[1:,0] - trans_each_file[:-1,0] | |
| trans_v_each_file[0,0] = trans_v_each_file[1,0] | |
| trans_v_each_file[1:,2] = trans_each_file[1:,2] - trans_each_file[:-1,2] | |
| trans_v_each_file[0,2] = trans_v_each_file[1,2] | |
| trans_v_each_file[:,1] = trans_each_file[:,1] | |
| shape_each_file = np.repeat(pose_data["betas"].reshape(1, -1), pose_each_file.shape[0], axis=0) | |
| if self.args.id_rep is not None: | |
| vid_each_file = np.repeat(np.array(int(100)-1).reshape(1, 1), pose_each_file.shape[0], axis=0) | |
| filtered_result = self._sample_from_clip( | |
| dst_lmdb_env, | |
| pose_each_file, trans_each_file,trans_v_each_file, shape_each_file, | |
| vid_each_file, | |
| disable_filtering, clean_first_seconds, clean_final_seconds, is_test, | |
| ) | |
| for type in filtered_result.keys(): | |
| n_filtered_out[type] += filtered_result[type] | |
| with dst_lmdb_env.begin() as txn: | |
| logger.info(colored(f"no. of samples: {txn.stat()['entries']}", "cyan")) | |
| n_total_filtered = 0 | |
| for type, n_filtered in n_filtered_out.items(): | |
| logger.info("{}: {}".format(type, n_filtered)) | |
| n_total_filtered += n_filtered | |
| logger.info(colored("no. of excluded samples: {} ({:.1f}%)".format( | |
| n_total_filtered, 100 * n_total_filtered / (txn.stat()["entries"] + n_total_filtered)), "cyan")) | |
| dst_lmdb_env.sync() | |
| dst_lmdb_env.close() | |
| def _sample_from_clip( | |
| self, dst_lmdb_env, pose_each_file, trans_each_file, trans_v_each_file,shape_each_file, | |
| vid_each_file, | |
| disable_filtering, clean_first_seconds, clean_final_seconds, is_test, | |
| ): | |
| """ | |
| for data cleaning, we ignore the data for first and final n s | |
| for test, we return all data | |
| """ | |
| # audio_start = int(self.alignment[0] * self.args.audio_fps) | |
| # pose_start = int(self.alignment[1] * self.args.pose_fps) | |
| #logger.info(f"before: {audio_each_file.shape} {pose_each_file.shape}") | |
| # audio_each_file = audio_each_file[audio_start:] | |
| # pose_each_file = pose_each_file[pose_start:] | |
| # trans_each_file = | |
| #logger.info(f"after alignment: {audio_each_file.shape} {pose_each_file.shape}") | |
| #print(pose_each_file.shape) | |
| round_seconds_skeleton = pose_each_file.shape[0] // self.args.pose_fps # assume 1500 frames / 15 fps = 100 s | |
| #print(round_seconds_skeleton) | |
| clip_s_t, clip_e_t = clean_first_seconds, round_seconds_skeleton - clean_final_seconds # assume [10, 90]s | |
| clip_s_f_audio, clip_e_f_audio = self.args.audio_fps * clip_s_t, clip_e_t * self.args.audio_fps # [160,000,90*160,000] | |
| clip_s_f_pose, clip_e_f_pose = clip_s_t * self.args.pose_fps, clip_e_t * self.args.pose_fps # [150,90*15] | |
| for ratio in self.args.multi_length_training: | |
| if is_test:# stride = length for test | |
| cut_length = clip_e_f_pose - clip_s_f_pose | |
| self.args.stride = cut_length | |
| self.max_length = cut_length | |
| else: | |
| self.args.stride = int(ratio*self.ori_stride) | |
| cut_length = int(self.ori_length*ratio) | |
| num_subdivision = math.floor((clip_e_f_pose - clip_s_f_pose - cut_length) / self.args.stride) + 1 | |
| logger.info(f"pose from frame {clip_s_f_pose} to {clip_e_f_pose}, length {cut_length}") | |
| logger.info(f"{num_subdivision} clips is expected with stride {self.args.stride}") | |
| n_filtered_out = defaultdict(int) | |
| sample_pose_list = [] | |
| sample_audio_list = [] | |
| sample_shape_list = [] | |
| sample_vid_list = [] | |
| sample_trans_list = [] | |
| sample_trans_v_list = [] | |
| for i in range(num_subdivision): # cut into around 2s chip, (self npose) | |
| start_idx = clip_s_f_pose + i * self.args.stride | |
| fin_idx = start_idx + cut_length | |
| sample_pose = pose_each_file[start_idx:fin_idx] | |
| sample_trans = trans_each_file[start_idx:fin_idx] | |
| sample_trans_v = trans_v_each_file[start_idx:fin_idx] | |
| sample_shape = shape_each_file[start_idx:fin_idx] | |
| # print(sample_pose.shape) | |
| sample_vid = vid_each_file[start_idx:fin_idx] if self.args.id_rep is not None else np.array([-1]) | |
| if sample_pose.any() != None: | |
| # filtering motion skeleton data | |
| sample_pose, filtering_message = MotionPreprocessor(sample_pose).get() | |
| is_correct_motion = (sample_pose is not None) | |
| if is_correct_motion or disable_filtering: | |
| sample_pose_list.append(sample_pose) | |
| sample_shape_list.append(sample_shape) | |
| sample_vid_list.append(sample_vid) | |
| sample_trans_list.append(sample_trans) | |
| sample_trans_v_list.append(sample_trans_v) | |
| else: | |
| n_filtered_out[filtering_message] += 1 | |
| if len(sample_pose_list) > 0: | |
| with dst_lmdb_env.begin(write=True) as txn: | |
| for pose, shape, vid, trans,trans_v in zip( | |
| sample_pose_list, | |
| sample_shape_list, | |
| sample_vid_list, | |
| sample_trans_list, | |
| sample_trans_v_list, | |
| ): | |
| k = "{:005}".format(self.n_out_samples).encode("ascii") | |
| v = [pose , shape, vid, trans,trans_v] | |
| v = pickle.dumps(v,5) | |
| txn.put(k, v) | |
| self.n_out_samples += 1 | |
| return n_filtered_out | |
| def __getitem__(self, idx): | |
| with self.lmdb_env.begin(write=False) as txn: | |
| key = "{:005}".format(idx).encode("ascii") | |
| sample = txn.get(key) | |
| sample = pickle.loads(sample) | |
| tar_pose, in_shape, vid, trans,trans_v = sample | |
| tar_pose = torch.from_numpy(tar_pose).float() | |
| tar_pose = rc.axis_angle_to_matrix(tar_pose.reshape(-1, 55, 3)) | |
| tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(-1, 55*6) | |
| if self.norm: | |
| tar_pose = (tar_pose - self.mean) / self.std | |
| trans_v = (trans_v-self.trans_mean)/self.trans_std | |
| if self.loader_type == "test": | |
| tar_pose = tar_pose.float() | |
| trans = torch.from_numpy(trans).float() | |
| trans_v = torch.from_numpy(trans_v).float() | |
| vid = torch.from_numpy(vid).float() | |
| in_shape = torch.from_numpy(in_shape).float() | |
| else: | |
| in_shape = torch.from_numpy(in_shape).reshape((in_shape.shape[0], -1)).float() | |
| trans = torch.from_numpy(trans).reshape((trans.shape[0], -1)).float() | |
| trans_v = torch.from_numpy(trans_v).reshape((trans_v.shape[0], -1)).float() | |
| vid = torch.from_numpy(vid).reshape((vid.shape[0], -1)).float() | |
| tar_pose = tar_pose.reshape((tar_pose.shape[0], -1)).float() | |
| tar_pose = torch.cat([tar_pose, trans_v], dim=1) | |
| return tar_pose | |
| class MotionPreprocessor: | |
| def __init__(self, skeletons): | |
| self.skeletons = skeletons | |
| #self.mean_pose = mean_pose | |
| self.filtering_message = "PASS" | |
| def get(self): | |
| assert (self.skeletons is not None) | |
| # filtering | |
| if self.skeletons is not None: | |
| if self.check_pose_diff(): | |
| self.skeletons = [] | |
| self.filtering_message = "pose" | |
| # elif self.check_spine_angle(): | |
| # self.skeletons = [] | |
| # self.filtering_message = "spine angle" | |
| # elif self.check_static_motion(): | |
| # self.skeletons = [] | |
| # self.filtering_message = "motion" | |
| # if self.skeletons != []: | |
| # self.skeletons = self.skeletons.tolist() | |
| # for i, frame in enumerate(self.skeletons): | |
| # assert not np.isnan(self.skeletons[i]).any() # missing joints | |
| return self.skeletons, self.filtering_message | |
| def check_static_motion(self, verbose=True): | |
| def get_variance(skeleton, joint_idx): | |
| wrist_pos = skeleton[:, joint_idx] | |
| variance = np.sum(np.var(wrist_pos, axis=0)) | |
| return variance | |
| left_arm_var = get_variance(self.skeletons, 6) | |
| right_arm_var = get_variance(self.skeletons, 9) | |
| th = 0.0014 # exclude 13110 | |
| # th = 0.002 # exclude 16905 | |
| if left_arm_var < th and right_arm_var < th: | |
| if verbose: | |
| print("skip - check_static_motion left var {}, right var {}".format(left_arm_var, right_arm_var)) | |
| return True | |
| else: | |
| if verbose: | |
| print("pass - check_static_motion left var {}, right var {}".format(left_arm_var, right_arm_var)) | |
| return False | |
| def check_pose_diff(self, verbose=False): | |
| # diff = np.abs(self.skeletons - self.mean_pose) # 186*1 | |
| # diff = np.mean(diff) | |
| # # th = 0.017 | |
| # th = 0.02 #0.02 # exclude 3594 | |
| # if diff < th: | |
| # if verbose: | |
| # print("skip - check_pose_diff {:.5f}".format(diff)) | |
| # return True | |
| # # th = 3.5 #0.02 # exclude 3594 | |
| # # if 3.5 < diff < 5: | |
| # # if verbose: | |
| # # print("skip - check_pose_diff {:.5f}".format(diff)) | |
| # # return True | |
| # else: | |
| # if verbose: | |
| # print("pass - check_pose_diff {:.5f}".format(diff)) | |
| return False | |
| def check_spine_angle(self, verbose=True): | |
| def angle_between(v1, v2): | |
| v1_u = v1 / np.linalg.norm(v1) | |
| v2_u = v2 / np.linalg.norm(v2) | |
| return np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0)) | |
| angles = [] | |
| for i in range(self.skeletons.shape[0]): | |
| spine_vec = self.skeletons[i, 1] - self.skeletons[i, 0] | |
| angle = angle_between(spine_vec, [0, -1, 0]) | |
| angles.append(angle) | |
| if np.rad2deg(max(angles)) > 30 or np.rad2deg(np.mean(angles)) > 20: # exclude 4495 | |
| # if np.rad2deg(max(angles)) > 20: # exclude 8270 | |
| if verbose: | |
| print("skip - check_spine_angle {:.5f}, {:.5f}".format(max(angles), np.mean(angles))) | |
| return True | |
| else: | |
| if verbose: | |
| print("pass - check_spine_angle {:.5f}".format(max(angles))) | |
| return False |