File size: 14,404 Bytes
123218a
 
 
 
 
 
 
 
1758669
 
 
 
123218a
 
 
 
 
 
 
 
 
1758669
 
123218a
1758669
123218a
1758669
 
123218a
 
1758669
 
123218a
 
 
 
 
1758669
 
 
 
123218a
1758669
123218a
1758669
 
123218a
 
 
 
 
 
 
 
 
 
1758669
 
 
123218a
 
 
 
1758669
123218a
 
 
 
 
 
 
 
 
 
1758669
123218a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import gradio as gr
import random
from recurrentgpt import RecurrentGPT
from human_simulator import Human
from sentence_transformers import SentenceTransformer
from utils import get_init, parse_instructions
import re

###################################################################################################################################################################
###################################################################################################################################################################
# TODO: add user database

# from urllib.parse import quote_plus
# from pymongo import MongoClient

# uri = "mongodb://%s:%s@%s" % (quote_plus("xxx"),
#                               quote_plus("xxx"), "localhost")
# client = MongoClient(uri, maxPoolSize=None)
# db = client.recurrentGPT_db
# log = db.log

###################################################################################################################################################################
###################################################################################################################################################################

_CACHE = {}

# TODO : try with different embedding models
## Build the semantic search model
embedder = SentenceTransformer('multi-qa-mpnet-base-cos-v1')

# TODO: make a prompt class
def init_prompt(text_type, description, structure, units, tone):
    if description == "":
        description = ""
    else:
        description = " about " + description
    return f"""
Please write a {text_type} about {description} with {units} {structure}. Follow the format below precisely:
Begin with the title of the {text_type}.
Next, write an outline for the first {structure}. The outline should describe the {description} and the beginning of the {text_type}.
Write the first three paragraphs with their indication of the {text_type} based on your outline. Write in a {tone} style and take your time to set the context.
Write a summary that captures the key information of the three paragraphs.
Finally, write three different instructions for what to write next, each containing around five sentences. Each instruction should present a possible, interesting continuation of the {text_type}.
The output format should follow these guidelines:
Name: <name of the {text_type}>
Outline: <outline for the first {structure}>
Paragraph 1: <content for paragraph 1>
Paragraph 2: <content for paragraph 2>
Paragraph 3: <content for paragraph 3>
Summary: <content of summary>
Instruction 1: <content for instruction 1>
Instruction 2: <content for instruction 2>
Instruction 3: <content for instruction 3>
Make sure to be precise and follow the output format strictly.
"""

def init(text_type, description, request: gr.Request):
    if tex_type == "":
        text_type = "Linkedin post"
    global _CACHE
    cookie = request.headers['cookie']
    cookie = cookie.split('; _gat_gtag')[0]
    # prepare first init
    init_paragraphs = get_init(text=init_prompt(text_type, description, structure, units, tone))
    # print(init_paragraphs)
    start_input_to_human = {
        'output_paragraph': init_paragraphs['Paragraph 3'],
        'input_paragraph': '\n\n'.join([init_paragraphs['Paragraph 1'], init_paragraphs['Paragraph 2']]),
        'output_memory': init_paragraphs['Summary'],
        "output_instruction": [init_paragraphs['Instruction 1'], init_paragraphs['Instruction 2'], init_paragraphs['Instruction 3']]
    }

    _CACHE[cookie] = {"start_input_to_human": start_input_to_human,
                      "init_paragraphs": init_paragraphs}
    written_paras = f"""Title: {init_paragraphs['name']} 
Outline: {init_paragraphs['Outline']}
Paragraphs:
{start_input_to_human['input_paragraph']}"""
    long_memory = parse_instructions([init_paragraphs['Paragraph 1'], init_paragraphs['Paragraph 2']])
    # short memory, long memory, current written paragraphs, 3 next instructions
    return start_input_to_human['output_memory'], long_memory, written_paras, init_paragraphs['Instruction 1'], init_paragraphs['Instruction 2'], init_paragraphs['Instruction 3']

def step(short_memory, long_memory, instruction1, instruction2, instruction3, current_paras, request: gr.Request, ):
    if current_paras == "":
        return "", "", "", "", "", ""
    global _CACHE
    # print(list(_CACHE.keys()))
    # print(request.headers.get('cookie'))
    cookie = request.headers['cookie']
    cookie = cookie.split('; _gat_gtag')[0]
    cache = _CACHE[cookie]

    if "writer" not in cache:
        start_input_to_human = cache["start_input_to_human"]
        start_input_to_human['output_instruction'] = [
            instruction1, instruction2, instruction3]
        init_paragraphs = cache["init_paragraphs"]
        human = Human(input=start_input_to_human,
                      memory=None, embedder=embedder)
        human.step()
        start_short_memory = init_paragraphs['Summary']
        writer_start_input = human.output

        # Init writerGPT
        writer = RecurrentGPT(input=writer_start_input, short_memory=start_short_memory, long_memory=[
            init_paragraphs['Paragraph 1'], init_paragraphs['Paragraph 2']], memory_index=None, embedder=embedder)
        cache["writer"] = writer
        cache["human"] = human
        writer.step()
    else:
        human = cache["human"]
        writer = cache["writer"]
        output = writer.output
        output['output_memory'] = short_memory
        #randomly select one instruction out of three
        instruction_index = random.randint(0,2)
        output['output_instruction'] = [instruction1, instruction2, instruction3][instruction_index]
        human.input = output
        human.step()
        writer.input = human.output
        writer.step()

    long_memory = [[v] for v in writer.long_memory]
    # short memory, long memory, current written paragraphs, 3 next instructions
    return writer.output['output_memory'], long_memory, current_paras + '\n\n' + writer.output['input_paragraph'], human.output['output_instruction'], *writer.output['output_instruction']


def controled_step(short_memory, long_memory, selected_instruction, current_paras, request: gr.Request, ):
    if current_paras == "":
        return "", "", "", "", "", ""
    global _CACHE
    # print(list(_CACHE.keys()))
    # print(request.headers.get('cookie'))
    cookie = request.headers['cookie']
    cookie = cookie.split('; _gat_gtag')[0]
    cache = _CACHE[cookie]
    if "writer" not in cache:
        start_input_to_human = cache["start_input_to_human"]
        start_input_to_human['output_instruction'] = selected_instruction
        init_paragraphs = cache["init_paragraphs"]
        human = Human(input=start_input_to_human,
                      memory=None, embedder=embedder)
        human.step()
        start_short_memory = init_paragraphs['Summary']
        writer_start_input = human.output

        # Init writerGPT
        writer = RecurrentGPT(input=writer_start_input, short_memory=start_short_memory, long_memory=[
            init_paragraphs['Paragraph 1'], init_paragraphs['Paragraph 2']], memory_index=None, embedder=embedder)
        cache["writer"] = writer
        cache["human"] = human
        writer.step()
    else:
        human = cache["human"]
        writer = cache["writer"]
        output = writer.output
        output['output_memory'] = short_memory
        output['output_instruction'] = selected_instruction
        human.input = output
        human.step()
        writer.input = human.output
        writer.step()

    # short memory, long memory, current written paragraphs, 3 next instructions
    return writer.output['output_memory'], parse_instructions(writer.long_memory), current_paras + '\n\n' + writer.output['input_paragraph'], *writer.output['output_instruction']


# SelectData is a subclass of EventData
def on_select(instruction1, instruction2, instruction3, evt: gr.SelectData):
    selected_plan = int(evt.value.replace("Instruction ", ""))
    selected_plan = [instruction1, instruction2, instruction3][selected_plan-1]
    return selected_plan


with gr.Blocks(title="RecurrentGPT", css="footer {visibility: hidden}", theme='sudeepshouche/minimalist') as demo:
    gr.Markdown(
        """
    # RecurrentGPT
    Interactive Generation of (Arbitrarily) Long Texts with Human-in-the-Loop
    """)
    with gr.Tab("Auto-Generation"):
        with gr.Row():
            with gr.Column():
                with gr.Box():
                    with gr.Row():
                        with gr.Column(scale=1, min_width=200):
                            novel_type = gr.Textbox(
                                label="Novel Type", placeholder="e.g. science fiction")
                        with gr.Column(scale=2, min_width=400):
                            description = gr.Textbox(label="Description")
                btn_init = gr.Button(
                    "Init Novel Generation", variant="primary")
                gr.Examples(["Science Fiction", "Romance", "Mystery", "Fantasy",
                            "Historical", "Horror", "Thriller", "Western", "Young Adult", ], inputs=[novel_type])
                written_paras = gr.Textbox(
                    label="Written Paragraphs (editable)", max_lines=21, lines=21)
            with gr.Column():
                with gr.Box():
                    gr.Markdown("### Memory Module\n")
                    short_memory = gr.Textbox(
                        label="Short-Term Memory (editable)", max_lines=3, lines=3)
                    long_memory = gr.Textbox(
                        label="Long-Term Memory (editable)", max_lines=6, lines=6)
                    # long_memory = gr.Dataframe(
                    #     # label="Long-Term Memory (editable)",
                    #     headers=["Long-Term Memory (editable)"],
                    #     datatype=["str"],
                    #     row_count=3,
                    #     max_rows=3,
                    #     col_count=(1, "fixed"),
                    #     type="array",
                    # )
                with gr.Box():
                    gr.Markdown("### Instruction Module\n")
                    with gr.Row():
                        instruction1 = gr.Textbox(
                            label="Instruction 1 (editable)", max_lines=4, lines=4)
                        instruction2 = gr.Textbox(
                            label="Instruction 2 (editable)", max_lines=4, lines=4)
                        instruction3 = gr.Textbox(
                            label="Instruction 3 (editable)", max_lines=4, lines=4)
                    selected_plan = gr.Textbox(
                        label="Revised Instruction (from last step)", max_lines=2, lines=2)

                btn_step = gr.Button("Next Step", variant="primary")

        btn_init.click(init, inputs=[novel_type, description], outputs=[
            short_memory, long_memory, written_paras, instruction1, instruction2, instruction3])
        btn_step.click(step, inputs=[short_memory, long_memory, instruction1, instruction2, instruction3, written_paras], outputs=[
            short_memory, long_memory, written_paras, selected_plan, instruction1, instruction2, instruction3])

    with gr.Tab("Human-in-the-Loop"):
        with gr.Row():
            with gr.Column():
                with gr.Box():
                    with gr.Row():
                        with gr.Column(scale=1, min_width=200):
                            novel_type = gr.Textbox(
                                label="Novel Type", placeholder="e.g. science fiction")
                        with gr.Column(scale=2, min_width=400):
                            description = gr.Textbox(label="Description")
                btn_init = gr.Button(
                    "Init Novel Generation", variant="primary")
                gr.Examples(["Science Fiction", "Romance", "Mystery", "Fantasy",
                            "Historical", "Horror", "Thriller", "Western", "Young Adult", ], inputs=[novel_type])
                written_paras = gr.Textbox(
                    label="Written Paragraphs (editable)", max_lines=23, lines=23)
            with gr.Column():
                with gr.Box():
                    gr.Markdown("### Memory Module\n")
                    short_memory = gr.Textbox(
                        label="Short-Term Memory (editable)", max_lines=3, lines=3)
                    long_memory = gr.Textbox(
                        label="Long-Term Memory (editable)", max_lines=6, lines=6)
                with gr.Box():
                    gr.Markdown("### Instruction Module\n")
                    with gr.Row():
                        instruction1 = gr.Textbox(
                            label="Instruction 1", max_lines=3, lines=3, interactive=False)
                        instruction2 = gr.Textbox(
                            label="Instruction 2", max_lines=3, lines=3, interactive=False)
                        instruction3 = gr.Textbox(
                            label="Instruction 3", max_lines=3, lines=3, interactive=False)
                    with gr.Row():
                        with gr.Column(scale=1, min_width=100):
                            selected_plan = gr.Radio(["Instruction 1", "Instruction 2", "Instruction 3"], label="Instruction Selection",)
                                                    #  info="Select the instruction you want to revise and use for the next step generation.")
                        with gr.Column(scale=3, min_width=300):
                            selected_instruction = gr.Textbox(
                                label="Selected Instruction (editable)", max_lines=5, lines=5)

                btn_step = gr.Button("Next Step", variant="primary")

        btn_init.click(init, inputs=[novel_type, description], outputs=[
            short_memory, long_memory, written_paras, instruction1, instruction2, instruction3])
        btn_step.click(controled_step, inputs=[short_memory, long_memory, selected_instruction, written_paras], outputs=[
            short_memory, long_memory, written_paras, instruction1, instruction2, instruction3])
        selected_plan.select(on_select, inputs=[
                             instruction1, instruction2, instruction3], outputs=[selected_instruction])

    demo.queue(concurrency_count=1)

if __name__ == "__main__":
    demo.launch()