import gradio as gr import random from recurrentgpt import RecurrentGPT from human_simulator import Human from sentence_transformers import SentenceTransformer from utils import get_init, parse_instructions import re # from urllib.parse import quote_plus # from pymongo import MongoClient # uri = "mongodb://%s:%s@%s" % (quote_plus("xxx"), # quote_plus("xxx"), "localhost") # client = MongoClient(uri, maxPoolSize=None) # db = client.recurrentGPT_db # log = db.log _CACHE = {} # Build the semantic search model embedder = SentenceTransformer('multi-qa-mpnet-base-cos-v1') def init_prompt(novel_type, description): if description == "": description = "" else: description = " about " + description return f""" Please write a {novel_type} novel{description} with 50 chapters. Follow the format below precisely: Begin with the name of the novel. Next, write an outline for the first chapter. The outline should describe the background and the beginning of the novel. Write the first three paragraphs with their indication of the novel based on your outline. Write in a novelistic style and take your time to set the scene. Write a summary that captures the key information of the three paragraphs. Finally, write three different instructions for what to write next, each containing around five sentences. Each instruction should present a possible, interesting continuation of the story. The output format should follow these guidelines: Name: Outline: Paragraph 1: Paragraph 2: Paragraph 3: Summary: Instruction 1: Instruction 2: Instruction 3: Make sure to be precise and follow the output format strictly. """ def init(novel_type, description, request: gr.Request): if novel_type == "": novel_type = "Science Fiction" global _CACHE cookie = request.headers['cookie'] cookie = cookie.split('; _gat_gtag')[0] # prepare first init init_paragraphs = get_init(text=init_prompt(novel_type,description)) # print(init_paragraphs) start_input_to_human = { 'output_paragraph': init_paragraphs['Paragraph 3'], 'input_paragraph': '\n\n'.join([init_paragraphs['Paragraph 1'], init_paragraphs['Paragraph 2']]), 'output_memory': init_paragraphs['Summary'], "output_instruction": [init_paragraphs['Instruction 1'], init_paragraphs['Instruction 2'], init_paragraphs['Instruction 3']] } _CACHE[cookie] = {"start_input_to_human": start_input_to_human, "init_paragraphs": init_paragraphs} written_paras = f"""Title: {init_paragraphs['name']} Outline: {init_paragraphs['Outline']} Paragraphs: {start_input_to_human['input_paragraph']}""" long_memory = parse_instructions([init_paragraphs['Paragraph 1'], init_paragraphs['Paragraph 2']]) # short memory, long memory, current written paragraphs, 3 next instructions return start_input_to_human['output_memory'], long_memory, written_paras, init_paragraphs['Instruction 1'], init_paragraphs['Instruction 2'], init_paragraphs['Instruction 3'] def step(short_memory, long_memory, instruction1, instruction2, instruction3, current_paras, request: gr.Request, ): if current_paras == "": return "", "", "", "", "", "" global _CACHE # print(list(_CACHE.keys())) # print(request.headers.get('cookie')) cookie = request.headers['cookie'] cookie = cookie.split('; _gat_gtag')[0] cache = _CACHE[cookie] if "writer" not in cache: start_input_to_human = cache["start_input_to_human"] start_input_to_human['output_instruction'] = [ instruction1, instruction2, instruction3] init_paragraphs = cache["init_paragraphs"] human = Human(input=start_input_to_human, memory=None, embedder=embedder) human.step() start_short_memory = init_paragraphs['Summary'] writer_start_input = human.output # Init writerGPT writer = RecurrentGPT(input=writer_start_input, short_memory=start_short_memory, long_memory=[ init_paragraphs['Paragraph 1'], init_paragraphs['Paragraph 2']], memory_index=None, embedder=embedder) cache["writer"] = writer cache["human"] = human writer.step() else: human = cache["human"] writer = cache["writer"] output = writer.output output['output_memory'] = short_memory #randomly select one instruction out of three instruction_index = random.randint(0,2) output['output_instruction'] = [instruction1, instruction2, instruction3][instruction_index] human.input = output human.step() writer.input = human.output writer.step() long_memory = [[v] for v in writer.long_memory] # short memory, long memory, current written paragraphs, 3 next instructions return writer.output['output_memory'], long_memory, current_paras + '\n\n' + writer.output['input_paragraph'], human.output['output_instruction'], *writer.output['output_instruction'] def controled_step(short_memory, long_memory, selected_instruction, current_paras, request: gr.Request, ): if current_paras == "": return "", "", "", "", "", "" global _CACHE # print(list(_CACHE.keys())) # print(request.headers.get('cookie')) cookie = request.headers['cookie'] cookie = cookie.split('; _gat_gtag')[0] cache = _CACHE[cookie] if "writer" not in cache: start_input_to_human = cache["start_input_to_human"] start_input_to_human['output_instruction'] = selected_instruction init_paragraphs = cache["init_paragraphs"] human = Human(input=start_input_to_human, memory=None, embedder=embedder) human.step() start_short_memory = init_paragraphs['Summary'] writer_start_input = human.output # Init writerGPT writer = RecurrentGPT(input=writer_start_input, short_memory=start_short_memory, long_memory=[ init_paragraphs['Paragraph 1'], init_paragraphs['Paragraph 2']], memory_index=None, embedder=embedder) cache["writer"] = writer cache["human"] = human writer.step() else: human = cache["human"] writer = cache["writer"] output = writer.output output['output_memory'] = short_memory output['output_instruction'] = selected_instruction human.input = output human.step() writer.input = human.output writer.step() # short memory, long memory, current written paragraphs, 3 next instructions return writer.output['output_memory'], parse_instructions(writer.long_memory), current_paras + '\n\n' + writer.output['input_paragraph'], *writer.output['output_instruction'] # SelectData is a subclass of EventData def on_select(instruction1, instruction2, instruction3, evt: gr.SelectData): selected_plan = int(evt.value.replace("Instruction ", "")) selected_plan = [instruction1, instruction2, instruction3][selected_plan-1] return selected_plan with gr.Blocks(title="RecurrentGPT", css="footer {visibility: hidden}", theme='sudeepshouche/minimalist') as demo: gr.Markdown( """ # RecurrentGPT Interactive Generation of (Arbitrarily) Long Texts with Human-in-the-Loop """) with gr.Tab("Auto-Generation"): with gr.Row(): with gr.Column(): with gr.Box(): with gr.Row(): with gr.Column(scale=1, min_width=200): novel_type = gr.Textbox( label="Novel Type", placeholder="e.g. science fiction") with gr.Column(scale=2, min_width=400): description = gr.Textbox(label="Description") btn_init = gr.Button( "Init Novel Generation", variant="primary") gr.Examples(["Science Fiction", "Romance", "Mystery", "Fantasy", "Historical", "Horror", "Thriller", "Western", "Young Adult", ], inputs=[novel_type]) written_paras = gr.Textbox( label="Written Paragraphs (editable)", max_lines=21, lines=21) with gr.Column(): with gr.Box(): gr.Markdown("### Memory Module\n") short_memory = gr.Textbox( label="Short-Term Memory (editable)", max_lines=3, lines=3) long_memory = gr.Textbox( label="Long-Term Memory (editable)", max_lines=6, lines=6) # long_memory = gr.Dataframe( # # label="Long-Term Memory (editable)", # headers=["Long-Term Memory (editable)"], # datatype=["str"], # row_count=3, # max_rows=3, # col_count=(1, "fixed"), # type="array", # ) with gr.Box(): gr.Markdown("### Instruction Module\n") with gr.Row(): instruction1 = gr.Textbox( label="Instruction 1 (editable)", max_lines=4, lines=4) instruction2 = gr.Textbox( label="Instruction 2 (editable)", max_lines=4, lines=4) instruction3 = gr.Textbox( label="Instruction 3 (editable)", max_lines=4, lines=4) selected_plan = gr.Textbox( label="Revised Instruction (from last step)", max_lines=2, lines=2) btn_step = gr.Button("Next Step", variant="primary") btn_init.click(init, inputs=[novel_type, description], outputs=[ short_memory, long_memory, written_paras, instruction1, instruction2, instruction3]) btn_step.click(step, inputs=[short_memory, long_memory, instruction1, instruction2, instruction3, written_paras], outputs=[ short_memory, long_memory, written_paras, selected_plan, instruction1, instruction2, instruction3]) with gr.Tab("Human-in-the-Loop"): with gr.Row(): with gr.Column(): with gr.Box(): with gr.Row(): with gr.Column(scale=1, min_width=200): novel_type = gr.Textbox( label="Novel Type", placeholder="e.g. science fiction") with gr.Column(scale=2, min_width=400): description = gr.Textbox(label="Description") btn_init = gr.Button( "Init Novel Generation", variant="primary") gr.Examples(["Science Fiction", "Romance", "Mystery", "Fantasy", "Historical", "Horror", "Thriller", "Western", "Young Adult", ], inputs=[novel_type]) written_paras = gr.Textbox( label="Written Paragraphs (editable)", max_lines=23, lines=23) with gr.Column(): with gr.Box(): gr.Markdown("### Memory Module\n") short_memory = gr.Textbox( label="Short-Term Memory (editable)", max_lines=3, lines=3) long_memory = gr.Textbox( label="Long-Term Memory (editable)", max_lines=6, lines=6) with gr.Box(): gr.Markdown("### Instruction Module\n") with gr.Row(): instruction1 = gr.Textbox( label="Instruction 1", max_lines=3, lines=3, interactive=False) instruction2 = gr.Textbox( label="Instruction 2", max_lines=3, lines=3, interactive=False) instruction3 = gr.Textbox( label="Instruction 3", max_lines=3, lines=3, interactive=False) with gr.Row(): with gr.Column(scale=1, min_width=100): selected_plan = gr.Radio(["Instruction 1", "Instruction 2", "Instruction 3"], label="Instruction Selection",) # info="Select the instruction you want to revise and use for the next step generation.") with gr.Column(scale=3, min_width=300): selected_instruction = gr.Textbox( label="Selected Instruction (editable)", max_lines=5, lines=5) btn_step = gr.Button("Next Step", variant="primary") btn_init.click(init, inputs=[novel_type, description], outputs=[ short_memory, long_memory, written_paras, instruction1, instruction2, instruction3]) btn_step.click(controled_step, inputs=[short_memory, long_memory, selected_instruction, written_paras], outputs=[ short_memory, long_memory, written_paras, instruction1, instruction2, instruction3]) selected_plan.select(on_select, inputs=[ instruction1, instruction2, instruction3], outputs=[selected_instruction]) demo.queue(concurrency_count=1) if __name__ == "__main__": demo.launch()