import re from langchain_openai import ChatOpenAI from langchain.schema import ( AIMessage, HumanMessage, SystemMessage ) import os OPENAI_API_KEY=os.getenv('OPENAI_API_KEY') def get_api_response(content: str, max_tokens=None): response = None chat = ChatOpenAI( openai_api_key=OPENAI_API_KEY, #model='gpt-3', #model='gpt-3.5-turbo', #model='gpt-3.5-turbo-0613', #model='gpt-3.5-turbo-16k', model='gpt-3.5-turbo-16k-0613', #openai_proxy=OPENAI_Proxy, #model='gpt-4', #model='gpt-4-0613', #model='gpt-4-32k-0613', temperature=0.1) # response = openai.ChatCompletion.create( # model='gpt-3.5-turbo-16k-0613', # messages=[{ # 'role': 'system', # 'content': 'You are a helpful and creative assistant for writing novel.' # }, { # 'role': 'user', # 'content': content, # }], # temperature=0.5, # max_tokens=max_tokens # ) # response = None messages = [ SystemMessage(content="You are a helpful and creative assistant for writing novel."), HumanMessage(content=content) ] try: response = chat(messages) except: raise Exception("OpenAI Error") if response is not None: return response.content else: return "Error: response not found" def get_content_between_a_b(a,b,text): return re.search(f"{a}(.*?)\n{b}", text, re.DOTALL).group(1).strip() def get_init(init_text=None,text=None,response_file=None): """ init_text: if the title, outline, and the first 3 paragraphs are given in a .txt file, directly read text: if no .txt file is given, use init prompt to generate """ if not init_text: response = get_api_response(text) print(response) if response_file: with open(response_file, 'a', encoding='utf-8') as f: f.write(f"Init output here:\n{response}\n\n") else: with open(init_text,'r',encoding='utf-8') as f: response = f.read() f.close() paragraphs = { "name":"", "Outline":"", "Paragraph 1":"", "Paragraph 2":"", "Paragraph 3":"", "Summary": "", "Instruction 1":"", "Instruction 2":"", "Instruction 3":"" } paragraphs['name'] = get_content_between_a_b('Name:','Outline',response) paragraphs['Paragraph 1'] = get_content_between_a_b('Paragraph 1:','Paragraph 2:',response) paragraphs['Paragraph 2'] = get_content_between_a_b('Paragraph 2:','Paragraph 3:',response) paragraphs['Paragraph 3'] = get_content_between_a_b('Paragraph 3:','Summary',response) paragraphs['Summary'] = get_content_between_a_b('Summary:','Instruction 1',response) paragraphs['Instruction 1'] = get_content_between_a_b('Instruction 1:','Instruction 2',response) paragraphs['Instruction 2'] = get_content_between_a_b('Instruction 2:','Instruction 3',response) lines = response.splitlines() # content of Instruction 3 may be in the same line with I3 or in the next line if lines[-1] != '\n' and lines[-1].startswith('Instruction 3'): paragraphs['Instruction 3'] = lines[-1][len("Instruction 3:"):] elif lines[-1] != '\n': paragraphs['Instruction 3'] = lines[-1] # Sometimes it gives Chapter outline, sometimes it doesn't for line in lines: if line.startswith('Chapter'): paragraphs['Outline'] = get_content_between_a_b('Outline:','Chapter',response) break if paragraphs['Outline'] == '': paragraphs['Outline'] = get_content_between_a_b('Outline:','Paragraph',response) return paragraphs def get_chatgpt_response(model,prompt): response = "" for data in model.ask(prompt): response = data["message"] model.delete_conversation(model.conversation_id) model.reset_chat() return response def parse_instructions(instructions): output = "" for i in range(len(instructions)): output += f"{i+1}. {instructions[i]}\n" return output