Spaces:
Paused
Paused
Commit
·
b21da5b
1
Parent(s):
f093c76
Update app_v4.py
Browse files
app_v4.py
CHANGED
|
@@ -1,5 +1,64 @@
|
|
| 1 |
-
import torch
|
| 2 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
-
|
| 5 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
from transformers import AutoTokenizer
|
| 3 |
+
from auto_gptq import AutoGPTQForCausalLM
|
| 4 |
+
import torch
|
| 5 |
+
import subprocess
|
| 6 |
+
|
| 7 |
+
# Function to get memory info
|
| 8 |
+
def get_gpu_memory():
|
| 9 |
+
try:
|
| 10 |
+
result = subprocess.check_output(["nvidia-smi", "--query-gpu=memory.free,memory.total", "--format=csv,nounits,noheader"], text=True)
|
| 11 |
+
memory_info = [x.split(',') for x in result.strip().split('\n')]
|
| 12 |
+
memory_info = [{"free": int(x[0].strip()), "total": int(x[1].strip())} for x in memory_info]
|
| 13 |
+
except FileNotFoundError:
|
| 14 |
+
memory_info = [{"free": "N/A", "total": "N/A"}]
|
| 15 |
+
return memory_info
|
| 16 |
+
|
| 17 |
+
# Display GPU memory information
|
| 18 |
+
gpu_memory = get_gpu_memory()
|
| 19 |
+
st.write(f"GPU Memory Info: {gpu_memory}")
|
| 20 |
+
|
| 21 |
+
# Define pretrained model directory
|
| 22 |
+
pretrained_model_dir = "FPHam/Jackson_The_Formalizer_V2_13b_GPTQ"
|
| 23 |
+
|
| 24 |
+
# Check if CUDA is available and get the device
|
| 25 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 26 |
+
|
| 27 |
+
# Before allocating or loading the model, clear up memory if CUDA is available
|
| 28 |
+
if device == "cuda:0":
|
| 29 |
+
torch.cuda.empty_cache()
|
| 30 |
+
|
| 31 |
+
# Load tokenizer
|
| 32 |
+
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True)
|
| 33 |
+
|
| 34 |
+
# Attempt to load the model, catch any OOM errors
|
| 35 |
+
try:
|
| 36 |
+
model = AutoGPTQForCausalLM.from_quantized(
|
| 37 |
+
pretrained_model_dir,
|
| 38 |
+
model_basename="Jackson2-4bit-128g-GPTQ",
|
| 39 |
+
use_safetensors=True,
|
| 40 |
+
device=device,
|
| 41 |
+
max_memory={0: "10GIB"}
|
| 42 |
+
)
|
| 43 |
+
except RuntimeError as e:
|
| 44 |
+
if 'CUDA out of memory' in str(e):
|
| 45 |
+
st.error("CUDA out of memory. Try reducing the model size or input length.")
|
| 46 |
+
st.stop()
|
| 47 |
+
else:
|
| 48 |
+
raise e
|
| 49 |
+
|
| 50 |
+
# User input for the model
|
| 51 |
+
user_input = st.text_input("Input a phrase")
|
| 52 |
|
| 53 |
+
# Generate button
|
| 54 |
+
if st.button("Generate the prompt"):
|
| 55 |
+
try:
|
| 56 |
+
prompt_template = f'USER: {user_input}\nASSISTANT:'
|
| 57 |
+
inputs = tokenizer(prompt_template, return_tensors='pt', max_length=512, truncation=True, padding='max_length')
|
| 58 |
+
output = model.generate(**inputs)
|
| 59 |
+
st.markdown(f"**Generated Text:**\n{tokenizer.decode(output[0])}")
|
| 60 |
+
except RuntimeError as e:
|
| 61 |
+
if 'CUDA out of memory' in str(e):
|
| 62 |
+
st.error("CUDA out of memory during generation. Try reducing the input length.")
|
| 63 |
+
else:
|
| 64 |
+
raise e
|