Spaces:
Sleeping
Sleeping
File size: 9,474 Bytes
eb4910e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
#!/usr/bin/env python3
"""
Test script for the FAISS vector database created by loader.py.
Allows interactive querying of the documentation and searching for specific strings in results.
"""
import os
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
# Configuration
FAISS_INDEX_PATH = "faiss_index"
EMBEDDINGS_MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
def load_vector_db():
"""
Load the FAISS vector database from disk.
"""
if not os.path.exists(FAISS_INDEX_PATH):
print(f"Error: FAISS index not found at {FAISS_INDEX_PATH}")
print("Please run loader.py first to create the vector database.")
return None
try:
# Initialize embeddings (must use same model as used for creating the index)
embeddings = HuggingFaceEmbeddings(model_name=EMBEDDINGS_MODEL_NAME)
# Load FAISS index
vector_db = FAISS.load_local(FAISS_INDEX_PATH, embeddings, allow_dangerous_deserialization=True)
print(f"Successfully loaded FAISS index from {FAISS_INDEX_PATH}")
return vector_db
except Exception as e:
print(f"Error loading FAISS index: {e}")
return None
def search_documents(vector_db, query, k=3):
"""
Search the vector database for documents similar to the query.
Args:
vector_db: The loaded FAISS vector store
query: The search query string
k: Number of top results to return
Returns:
List of documents with similarity scores
"""
try:
# Perform similarity search with scores
docs_with_scores = vector_db.similarity_search_with_score(query, k=k)
return docs_with_scores
except Exception as e:
print(f"Error during search: {e}")
return []
def find_string_in_results(docs_with_scores, search_string):
"""
Find specific strings in the search results.
Args:
docs_with_scores: List of (document, score) tuples from similarity search
search_string: String to search for in the documents
Returns:
List of matches with context
"""
matches = []
for i, (doc, score) in enumerate(docs_with_scores):
content = doc.page_content.lower()
search_lower = search_string.lower()
if search_lower in content:
# Find all occurrences
start = 0
while True:
pos = content.find(search_lower, start)
if pos == -1:
break
# Extract context around the match (100 chars before and after)
context_start = max(0, pos - 100)
context_end = min(len(doc.page_content), pos + len(search_string) + 100)
context = doc.page_content[context_start:context_end]
matches.append({
'result_index': i + 1,
'source': doc.metadata.get('source', 'Unknown'),
'similarity_score': score,
'context': context,
'position': pos
})
start = pos + 1
return matches
def print_search_results(docs_with_scores):
"""
Print search results in a formatted way.
"""
print(f"\n{'='*60}")
print(f"SEARCH RESULTS ({len(docs_with_scores)} results)")
print(f"{'='*60}")
for i, (doc, score) in enumerate(docs_with_scores, 1):
print(f"\n--- Result {i} (Similarity Score: {score:.4f}) ---")
print(f"Source: {doc.metadata.get('source', 'Unknown')}")
print(f"Content Preview: {doc.page_content[:200]}...")
print("-" * 50)
def print_string_matches(matches, search_string):
"""
Print string search matches in a formatted way.
"""
if not matches:
print(f"\nβ No matches found for '{search_string}' in the search results.")
return
print(f"\n{'='*60}")
print(f"STRING SEARCH RESULTS for '{search_string}' ({len(matches)} matches)")
print(f"{'='*60}")
for match in matches:
print(f"\nβ
Match found in Result #{match['result_index']}")
print(f"Source: {match['source']}")
print(f"Similarity Score: {match['similarity_score']:.4f}")
print(f"Context: ...{match['context']}...")
print("-" * 50)
# Test cases configuration
TEST_CASES = [
{
"question": "What is the management IP address of DCX-L2LEAF1A?",
"expected_string": "172.20.20.57"
},
{
"question": "What VLANs are on DCX-L2LEAF1A?",
"expected_string": "VRF10_VLAN11"
},
{
"question": "What spanning tree mode is configured?",
"expected_string": "mstp"
},
{
"question": "What is the NTP server configured?",
"expected_string": "0.pool.ntp.org"
},
{
"question": "What VRF is used for management?",
"expected_string": "MGMT"
},
{
"question": "What is the default gateway for management?",
"expected_string": "172.20.20.1"
},
{
"question": "What ethernet interfaces are on DCX-L2LEAF1A?",
"expected_string": "Ethernet1"
},
{
"question": "What port-channel interfaces exist?",
"expected_string": "Port-Channel1"
},
{
"question": "What is the TerminAttr daemon configuration?",
"expected_string": "apiserver.arista.io"
},
{
"question": "What local users are configured?",
"expected_string": "admin"
},
{
"question": "What's the description of Ethernet5 on DCX-L2LEAF1A?",
"expected_string": "DCX-leaf1-server1_iLO"
},
{
"question": "What channel group is configured on DCX-L2LEAF1A Ethernet1?",
"expected_string": "channel-group 1"
},
{
"question": "What VLAN access mode is on DCX-L2LEAF1A Ethernet5?",
"expected_string": "access vlan 11"
},
{
"question": "What is the DNS server configured?",
"expected_string": "8.8.8.8"
},
{
"question": "What protocol is used for management API on DCX-L2LEAF1A?",
"expected_string": "protocol https"
}
]
def run_automated_tests(vector_db):
"""
Run automated tests using predefined test cases.
"""
print("\nπ§ͺ Running Automated FAISS Database Tests")
print("=" * 60)
total_tests = len(TEST_CASES)
passed_tests = 0
failed_tests = 0
for i, test_case in enumerate(TEST_CASES, 1):
question = test_case["question"]
expected_string = test_case["expected_string"]
print(f"\nπ Test {i}/{total_tests}: {question}")
print(f"Expected to find: '{expected_string}'")
print("-" * 50)
try:
# Perform semantic search (increase k to get more results)
docs_with_scores = search_documents(vector_db, question, k=10)
if not docs_with_scores:
print("β FAIL: No search results found")
failed_tests += 1
continue
# Search for the expected string in results
matches = find_string_in_results(docs_with_scores, expected_string)
if matches:
print(f"β
PASS: Found '{expected_string}' in search results")
print(f" Found in: {matches[0]['source']}")
print(f" Similarity Score: {matches[0]['similarity_score']:.4f}")
print(f" Context: ...{matches[0]['context'][:100]}...")
passed_tests += 1
else:
print(f"β FAIL: '{expected_string}' not found in search results")
print(" Search results sources (top 5):")
for j, (doc, score) in enumerate(docs_with_scores[:5]):
print(f" - {doc.metadata.get('source', 'Unknown')} (score: {score:.4f})")
# Debug: show content preview of top result
if docs_with_scores:
top_doc = docs_with_scores[0][0]
print(f" Top result content preview: {top_doc.page_content[:200]}...")
failed_tests += 1
except Exception as e:
print(f"β ERROR: {e}")
failed_tests += 1
# Print summary
print("\n" + "=" * 60)
print("π TEST SUMMARY")
print("=" * 60)
print(f"Total Tests: {total_tests}")
print(f"β
Passed: {passed_tests}")
print(f"β Failed: {failed_tests}")
print(f"Success Rate: {(passed_tests/total_tests)*100:.1f}%")
if failed_tests > 0:
print(f"\nβ οΈ {failed_tests} test(s) failed. Check the results above.")
return False
else:
print(f"\nπ All tests passed!")
return True
def main():
"""
Main function to run the automated test script.
"""
print("π Loading FAISS Vector Database...")
# Load the vector database
vector_db = load_vector_db()
if vector_db is None:
return
# Run automated tests
success = run_automated_tests(vector_db)
# Exit with appropriate code
if not success:
exit(1)
else:
print("\nβ
All tests completed successfully!")
exit(0)
if __name__ == "__main__":
main()
|