rogerscuall commited on
Commit
d243e59
·
verified ·
1 Parent(s): e7d9cd5

Upload folder using huggingface_hub

Browse files
Files changed (49) hide show
  1. .gitattributes +1 -0
  2. .github/workflows/update_space.yml +28 -0
  3. .gitignore +120 -0
  4. .gradio/certificate.pem +31 -0
  5. README.md +136 -8
  6. app.py +124 -0
  7. prompts.yaml +324 -0
  8. requirements.txt +7 -0
  9. vector_db/011cb030-9f92-4f50-8ecc-3367da4ec9c0/data_level0.bin +3 -0
  10. vector_db/011cb030-9f92-4f50-8ecc-3367da4ec9c0/header.bin +3 -0
  11. vector_db/011cb030-9f92-4f50-8ecc-3367da4ec9c0/length.bin +3 -0
  12. vector_db/011cb030-9f92-4f50-8ecc-3367da4ec9c0/link_lists.bin +0 -0
  13. vector_db/07856e2f-f2f9-41c9-a2d5-1134dd47093f/data_level0.bin +3 -0
  14. vector_db/07856e2f-f2f9-41c9-a2d5-1134dd47093f/header.bin +3 -0
  15. vector_db/07856e2f-f2f9-41c9-a2d5-1134dd47093f/length.bin +3 -0
  16. vector_db/07856e2f-f2f9-41c9-a2d5-1134dd47093f/link_lists.bin +0 -0
  17. vector_db/1909cee2-1ab3-4d69-9da6-04f43dd3bcf1/data_level0.bin +3 -0
  18. vector_db/1909cee2-1ab3-4d69-9da6-04f43dd3bcf1/header.bin +3 -0
  19. vector_db/1909cee2-1ab3-4d69-9da6-04f43dd3bcf1/length.bin +3 -0
  20. vector_db/1909cee2-1ab3-4d69-9da6-04f43dd3bcf1/link_lists.bin +0 -0
  21. vector_db/20503b76-c8bd-4907-aad0-5e3784636cb9/data_level0.bin +3 -0
  22. vector_db/20503b76-c8bd-4907-aad0-5e3784636cb9/header.bin +3 -0
  23. vector_db/20503b76-c8bd-4907-aad0-5e3784636cb9/length.bin +3 -0
  24. vector_db/20503b76-c8bd-4907-aad0-5e3784636cb9/link_lists.bin +0 -0
  25. vector_db/354a9b1e-41ba-45cd-b834-fd36adc10922/data_level0.bin +3 -0
  26. vector_db/354a9b1e-41ba-45cd-b834-fd36adc10922/header.bin +3 -0
  27. vector_db/354a9b1e-41ba-45cd-b834-fd36adc10922/length.bin +3 -0
  28. vector_db/354a9b1e-41ba-45cd-b834-fd36adc10922/link_lists.bin +0 -0
  29. vector_db/3b8659b3-c95b-4067-a3ba-4fe45af255eb/data_level0.bin +3 -0
  30. vector_db/3b8659b3-c95b-4067-a3ba-4fe45af255eb/header.bin +3 -0
  31. vector_db/3b8659b3-c95b-4067-a3ba-4fe45af255eb/length.bin +3 -0
  32. vector_db/3b8659b3-c95b-4067-a3ba-4fe45af255eb/link_lists.bin +0 -0
  33. vector_db/6b8b3f67-deca-40ee-b5f9-63910f59d1a1/data_level0.bin +3 -0
  34. vector_db/6b8b3f67-deca-40ee-b5f9-63910f59d1a1/header.bin +3 -0
  35. vector_db/6b8b3f67-deca-40ee-b5f9-63910f59d1a1/length.bin +3 -0
  36. vector_db/6b8b3f67-deca-40ee-b5f9-63910f59d1a1/link_lists.bin +0 -0
  37. vector_db/8b3af666-eafa-4bf9-9cc5-f2ee2df293d4/data_level0.bin +3 -0
  38. vector_db/8b3af666-eafa-4bf9-9cc5-f2ee2df293d4/header.bin +3 -0
  39. vector_db/8b3af666-eafa-4bf9-9cc5-f2ee2df293d4/length.bin +3 -0
  40. vector_db/8b3af666-eafa-4bf9-9cc5-f2ee2df293d4/link_lists.bin +0 -0
  41. vector_db/95b0bd82-2f19-4a76-b4ee-7ea8a1aa3c51/data_level0.bin +3 -0
  42. vector_db/95b0bd82-2f19-4a76-b4ee-7ea8a1aa3c51/header.bin +3 -0
  43. vector_db/95b0bd82-2f19-4a76-b4ee-7ea8a1aa3c51/length.bin +3 -0
  44. vector_db/95b0bd82-2f19-4a76-b4ee-7ea8a1aa3c51/link_lists.bin +0 -0
  45. vector_db/b031b115-2c37-4a6b-b402-8dc6743d5461/data_level0.bin +3 -0
  46. vector_db/b031b115-2c37-4a6b-b402-8dc6743d5461/header.bin +3 -0
  47. vector_db/b031b115-2c37-4a6b-b402-8dc6743d5461/length.bin +3 -0
  48. vector_db/b031b115-2c37-4a6b-b402-8dc6743d5461/link_lists.bin +0 -0
  49. vector_db/chroma.sqlite3 +3 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ vector_db/chroma.sqlite3 filter=lfs diff=lfs merge=lfs -text
.github/workflows/update_space.yml ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Run Python script
2
+
3
+ on:
4
+ push:
5
+ branches:
6
+ - main
7
+
8
+ jobs:
9
+ build:
10
+ runs-on: ubuntu-latest
11
+
12
+ steps:
13
+ - name: Checkout
14
+ uses: actions/checkout@v2
15
+
16
+ - name: Set up Python
17
+ uses: actions/setup-python@v2
18
+ with:
19
+ python-version: '3.9'
20
+
21
+ - name: Install Gradio
22
+ run: python -m pip install gradio
23
+
24
+ - name: Log in to Hugging Face
25
+ run: python -c 'import huggingface_hub; huggingface_hub.login(token="${{ secrets.hf_token }}")'
26
+
27
+ - name: Deploy to Spaces
28
+ run: gradio deploy
.gitignore ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ *.egg-info/
23
+ .installed.cfg
24
+ *.egg
25
+ MANIFEST
26
+
27
+ # PyInstaller
28
+ *.manifest
29
+ *.spec
30
+
31
+ # Installer logs
32
+ pip-log.txt
33
+ pip-delete-this-directory.txt
34
+
35
+ # Unit test / coverage reports
36
+ htmlcov/
37
+ .tox/
38
+ .nox/
39
+ .coverage
40
+ .coverage.*
41
+ .cache
42
+ nosetests.xml
43
+ coverage.xml
44
+ *,cover
45
+ .hypothesis/
46
+
47
+ # Translations
48
+ *.mo
49
+ *.pot
50
+
51
+ # Django stuff:
52
+ *.log
53
+ local_settings.py
54
+ db.sqlite3
55
+ db.sqlite3-journal
56
+
57
+ # Flask stuff:
58
+ instance/
59
+ .webassets-cache
60
+
61
+ # Scrapy stuff:
62
+ .scrapy
63
+
64
+ # Sphinx documentation
65
+ docs/_build/
66
+
67
+ # PyBuilder
68
+ target/
69
+
70
+ # IPython
71
+ profile_default/
72
+ ipython_config.py
73
+
74
+ # pyenv
75
+ .python-version
76
+
77
+ # pipenv
78
+ Pipfile.lock
79
+
80
+ # poetry
81
+ poetry.lock
82
+
83
+ # PEP 582; used by e.g. python-pnpm
84
+ __pypackages__/
85
+
86
+ # pyright
87
+ pyrightconfig.json
88
+
89
+ # celery beat schedule
90
+ celerybeat-schedule
91
+
92
+ # dotenv
93
+ .env
94
+ .env.*.local
95
+
96
+ # virtual environments
97
+ venv/
98
+ ENV/
99
+ env/
100
+ env.bak/
101
+ venv.bak/
102
+
103
+ # Spyder project settings
104
+ .spyderproject
105
+ .spyproject
106
+
107
+ # Rope project settings
108
+ .ropeproject
109
+
110
+ # mkdocs documentation
111
+ /site
112
+
113
+ # mypy
114
+ .mypy_cache/
115
+ .dmypy.json
116
+ dmypy.json
117
+
118
+ # Pyre type checker
119
+ .pyre/
120
+ .venv
.gradio/certificate.pem ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ -----BEGIN CERTIFICATE-----
2
+ MIIFazCCA1OgAwIBAgIRAIIQz7DSQONZRGPgu2OCiwAwDQYJKoZIhvcNAQELBQAw
3
+ TzELMAkGA1UEBhMCVVMxKTAnBgNVBAoTIEludGVybmV0IFNlY3VyaXR5IFJlc2Vh
4
+ cmNoIEdyb3VwMRUwEwYDVQQDEwxJU1JHIFJvb3QgWDEwHhcNMTUwNjA0MTEwNDM4
5
+ WhcNMzUwNjA0MTEwNDM4WjBPMQswCQYDVQQGEwJVUzEpMCcGA1UEChMgSW50ZXJu
6
+ ZXQgU2VjdXJpdHkgUmVzZWFyY2ggR3JvdXAxFTATBgNVBAMTDElTUkcgUm9vdCBY
7
+ MTCCAiIwDQYJKoZIhvcNAQEBBQADggIPADCCAgoCggIBAK3oJHP0FDfzm54rVygc
8
+ h77ct984kIxuPOZXoHj3dcKi/vVqbvYATyjb3miGbESTtrFj/RQSa78f0uoxmyF+
9
+ 0TM8ukj13Xnfs7j/EvEhmkvBioZxaUpmZmyPfjxwv60pIgbz5MDmgK7iS4+3mX6U
10
+ A5/TR5d8mUgjU+g4rk8Kb4Mu0UlXjIB0ttov0DiNewNwIRt18jA8+o+u3dpjq+sW
11
+ T8KOEUt+zwvo/7V3LvSye0rgTBIlDHCNAymg4VMk7BPZ7hm/ELNKjD+Jo2FR3qyH
12
+ B5T0Y3HsLuJvW5iB4YlcNHlsdu87kGJ55tukmi8mxdAQ4Q7e2RCOFvu396j3x+UC
13
+ B5iPNgiV5+I3lg02dZ77DnKxHZu8A/lJBdiB3QW0KtZB6awBdpUKD9jf1b0SHzUv
14
+ KBds0pjBqAlkd25HN7rOrFleaJ1/ctaJxQZBKT5ZPt0m9STJEadao0xAH0ahmbWn
15
+ OlFuhjuefXKnEgV4We0+UXgVCwOPjdAvBbI+e0ocS3MFEvzG6uBQE3xDk3SzynTn
16
+ jh8BCNAw1FtxNrQHusEwMFxIt4I7mKZ9YIqioymCzLq9gwQbooMDQaHWBfEbwrbw
17
+ qHyGO0aoSCqI3Haadr8faqU9GY/rOPNk3sgrDQoo//fb4hVC1CLQJ13hef4Y53CI
18
+ rU7m2Ys6xt0nUW7/vGT1M0NPAgMBAAGjQjBAMA4GA1UdDwEB/wQEAwIBBjAPBgNV
19
+ HRMBAf8EBTADAQH/MB0GA1UdDgQWBBR5tFnme7bl5AFzgAiIyBpY9umbbjANBgkq
20
+ hkiG9w0BAQsFAAOCAgEAVR9YqbyyqFDQDLHYGmkgJykIrGF1XIpu+ILlaS/V9lZL
21
+ ubhzEFnTIZd+50xx+7LSYK05qAvqFyFWhfFQDlnrzuBZ6brJFe+GnY+EgPbk6ZGQ
22
+ 3BebYhtF8GaV0nxvwuo77x/Py9auJ/GpsMiu/X1+mvoiBOv/2X/qkSsisRcOj/KK
23
+ NFtY2PwByVS5uCbMiogziUwthDyC3+6WVwW6LLv3xLfHTjuCvjHIInNzktHCgKQ5
24
+ ORAzI4JMPJ+GslWYHb4phowim57iaztXOoJwTdwJx4nLCgdNbOhdjsnvzqvHu7Ur
25
+ TkXWStAmzOVyyghqpZXjFaH3pO3JLF+l+/+sKAIuvtd7u+Nxe5AW0wdeRlN8NwdC
26
+ jNPElpzVmbUq4JUagEiuTDkHzsxHpFKVK7q4+63SM1N95R1NbdWhscdCb+ZAJzVc
27
+ oyi3B43njTOQ5yOf+1CceWxG1bQVs5ZufpsMljq4Ui0/1lvh+wjChP4kqKOJ2qxq
28
+ 4RgqsahDYVvTH9w7jXbyLeiNdd8XM2w9U/t7y0Ff/9yi0GE44Za4rF2LN9d11TPA
29
+ mRGunUHBcnWEvgJBQl9nJEiU0Zsnvgc/ubhPgXRR4Xq37Z0j4r7g1SgEEzwxA57d
30
+ emyPxgcYxn/eR44/KJ4EBs+lVDR3veyJm+kXQ99b21/+jh5Xos1AnX5iItreGCc=
31
+ -----END CERTIFICATE-----
README.md CHANGED
@@ -1,12 +1,140 @@
1
  ---
2
- title: Chat With Avd Doc
3
- emoji: 👀
4
- colorFrom: gray
5
- colorTo: purple
6
- sdk: gradio
7
- sdk_version: 5.31.0
8
  app_file: app.py
9
- pinned: false
 
10
  ---
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ title: chat-with-avd-doc
 
 
 
 
 
3
  app_file: app.py
4
+ sdk: gradio
5
+ sdk_version: 5.30.0
6
  ---
7
 
8
+ # Network Fabric Documentation Chat Assistant
9
+
10
+ ![Network Documentation](https://img.shields.io/badge/Network-Documentation-blue)
11
+ ![Python](https://img.shields.io/badge/Python-3.8+-yellow)
12
+ ![ChromaDB](https://img.shields.io/badge/ChromaDB-Backend-green)
13
+ ![Gemini](https://img.shields.io/badge/Gemini-Flash-purple)
14
+
15
+
16
+
17
+ A powerful AI-assisted tool for querying network fabric documentation using semantic search and large language models. This application allows network engineers and administrators to easily access and retrieve information about their network fabric through natural language queries.
18
+
19
+ ## 🚀 Key Features
20
+
21
+ - **Natural Language Queries**: Ask questions about your network in plain English
22
+ - **Semantic Search**: Uses embeddings to find relevant information beyond simple keyword matching
23
+ - **Device-Aware Context**: Distinguishes between global and device-specific information
24
+ - **Interactive UI**: User-friendly Gradio web interface
25
+ - **Vector Database**: Persistent storage of document embeddings using ChromaDB
26
+ - **LLM Integration**: Powered by Google's Gemini Flash model
27
+ - **Customizable Prompts**: Configure system and user prompts through YAML
28
+
29
+ ## 🛠️ Technical Stack
30
+
31
+ - **Vector Search**: ChromaDB for efficient semantic search
32
+ - **Embeddings**: Nomic AI's text embeddings (nomic-embed-text-v1)
33
+ - **LLM Orchestration**: SmolagentsCodeAgent for tool use and reasoning
34
+ - **UI Framework**: Gradio for the web interface
35
+ - **Model**: Google's Gemini 2.0 Flash via LiteLLM
36
+
37
+ ## 📋 Requirements
38
+
39
+ - Python 3.8+
40
+ - Dependencies listed in `requirements.txt`
41
+
42
+ ## 🔧 Installation
43
+
44
+ 1. **Clone the repository**:
45
+ ```bash
46
+ git clone https://github.com/yourusername/chat-with-avd-doc.git
47
+ cd chat-with-avd-doc
48
+ ```
49
+
50
+ 2. **Create a virtual environment** (recommended):
51
+ ```bash
52
+ python -m venv venv
53
+ source venv/bin/activate # On Windows: venv\Scripts\activate
54
+ ```
55
+
56
+ 3. **Install dependencies**:
57
+ ```bash
58
+ pip install -r requirements.txt
59
+ ```
60
+
61
+ 4. **Configure environment variables** (if needed):
62
+ - For LiteLLM to access Gemini, you may need to set API keys
63
+ - Create a `.env` file or set them directly in your environment
64
+
65
+ ## 🔍 Working with the Vector Database
66
+
67
+ The application uses ChromaDB to store document embeddings. The database is created in the `vector_db` directory.
68
+
69
+ - Documents are organized by "fabric" collection
70
+ - Metadata includes source information that can identify device-specific documentation
71
+ - The system distinguishes between global network information and device-specific details
72
+
73
+ ## 📝 Configuration
74
+
75
+ ### Prompt Templates
76
+
77
+ Edit `prompts.yaml` to customize:
78
+
79
+ - System instructions for the AI agent
80
+ - Formatting of responses
81
+ - Behavior and capabilities
82
+
83
+ ### Model Configuration
84
+
85
+ The application uses Gemini Flash by default. To modify:
86
+
87
+ ```python
88
+ # In app.py
89
+ model = LiteLLMModel("gemini/gemini-2.0-flash") # Change model here
90
+ ```
91
+
92
+ ## 🚀 Usage
93
+
94
+ 1. **Start the application**:
95
+ ```bash
96
+ python app.py
97
+ ```
98
+
99
+ 2. **Access the UI**:
100
+ Open your browser to http://127.0.0.1:7860
101
+
102
+ 3. **Query your network documentation**:
103
+ - Ask natural language questions about your network
104
+ - Example: "What is the loopback Pool address used by the fabric?"
105
+ - Example: "How many IP addresses are in use in the management network?"
106
+
107
+ ## 📂 Project Structure
108
+
109
+ ```
110
+ chat-with-avd-doc/
111
+ ├── app.py # Main application with Retriever Tool and Gradio UI
112
+ ├── prompts.yaml # Configuration for AI prompts and behavior
113
+ ├── requirements.txt # Python dependencies
114
+ └── vector_db/ # ChromaDB database files
115
+ ├── chroma.sqlite3 # SQLite database for ChromaDB
116
+ └── [UUID folders] # Vector data storage
117
+ ```
118
+
119
+ ## 🧪 How It Works
120
+
121
+ 1. **User Query**: User enters a natural language question through the Gradio UI
122
+ 2. **Semantic Encoding**: The query is converted to a vector embedding
123
+ 3. **Vector Search**: ChromaDB searches for similar document vectors
124
+ 4. **Context Assembly**: Top matches are assembled with source metadata
125
+ 5. **LLM Processing**: The Gemini model processes the query with retrieved context
126
+ 6. **Response Generation**: The system returns a natural language answer
127
+
128
+ ## 📄 License
129
+
130
+ MIT License
131
+
132
+ ## 🤝 Contributing
133
+
134
+ Contributions are welcome! Please feel free to submit a Pull Request.
135
+
136
+ 1. Fork the repository
137
+ 2. Create your feature branch (`git checkout -b feature/amazing-feature`)
138
+ 3. Commit your changes (`git commit -m 'Add some amazing feature'`)
139
+ 4. Push to the branch (`git push origin feature/amazing-feature`)
140
+ 5. Open a Pull Request
app.py ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # /// script
2
+ # dependencies = [
3
+ # "PyYAML",
4
+ # "chromadb",
5
+ # "sentence-transformers",
6
+ # "smolagents",
7
+ # "gradio",
8
+ # "einops",
9
+ # "smolagents[litellm]",
10
+ # ]
11
+ # ///
12
+
13
+ import yaml
14
+ with open("prompts.yaml", 'r') as stream:
15
+ prompt_templates = yaml.safe_load(stream)
16
+
17
+ # # OpenTelemetry
18
+ # from opentelemetry import trace
19
+ # from opentelemetry.sdk.trace import TracerProvider
20
+ # from opentelemetry.sdk.trace.export import BatchSpanProcessor
21
+ # from openinference.instrumentation.smolagents import SmolagentsInstrumentor
22
+ # from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
23
+ # from opentelemetry.sdk.trace.export import ConsoleSpanExporter, SimpleSpanProcessor
24
+ # # Endpoint
25
+ # endpoint = "http://0.0.0.0:6006/v1/traces"
26
+
27
+ # trace_provider = TracerProvider()
28
+ # trace_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter(endpoint)))
29
+ # SmolagentsInstrumentor().instrument(tracer_provider=trace_provider)
30
+
31
+ import chromadb
32
+ from sentence_transformers import SentenceTransformer
33
+
34
+ db_name = "vector_db"
35
+ EMBEDDING_MODEL_NAME = "nomic-ai/nomic-embed-text-v1"
36
+ model_embeding = SentenceTransformer(EMBEDDING_MODEL_NAME, trust_remote_code=True)
37
+ client = chromadb.PersistentClient(path=db_name)
38
+
39
+ from smolagents import Tool
40
+
41
+ class RetrieverTool(Tool):
42
+ name = "retriever"
43
+ description = "Provide information of our network using semantic search. "
44
+ inputs = {
45
+ "query": {
46
+ "type": "string",
47
+ "description": "The query to perform. This should be semantically close to your target documents. Use the affirmative form rather than a question.",
48
+ }
49
+ }
50
+ output_type = "string"
51
+
52
+ # def __init__(self, **kwargs):
53
+ # super().__init__(**kwargs)
54
+ # self.collection = client.get_or_create_collection('fabric')
55
+
56
+ def forward(self, query: str) -> str:
57
+ assert isinstance(query, str), "Your search query must be a string"
58
+ client = chromadb.PersistentClient(path=db_name)
59
+ collection = client.get_or_create_collection('fabric')
60
+ result1 = collection.get(include=['embeddings', 'metadatas'], limit=5000)
61
+ print("Number of results:", len(result1['embeddings']))
62
+ query_vector = model_embeding.encode(query)
63
+ results = collection.query(
64
+ query_embeddings=[query_vector],
65
+ n_results=10,
66
+ include=["metadatas", "documents"]
67
+ )
68
+ response = ""
69
+ for i in range(len(results['documents'][0])):
70
+ device = self.device(results['metadatas'][0][i]['source'])
71
+ if device == "global":
72
+ response += f"Global: {results['metadatas'][0][i]['source']}\n"
73
+ else:
74
+ response += f"Device: {device}\n"
75
+ response += f"Result: {results['documents'][0][i]}\n"
76
+ print("Results:", results)
77
+ return response
78
+
79
+ def device(self, value):
80
+ """
81
+ This method return the name of the device if the data belongs to a device if not is global.
82
+ Args:
83
+ value: Source of the metadata.
84
+ Returns:
85
+ str: The name of the device.
86
+ """
87
+ if not value:
88
+ return "global"
89
+ if "/devices/" not in value:
90
+ return "global"
91
+ parts = value.split("/devices/")
92
+ if len(parts) != 2:
93
+ return "global"
94
+ device_name = parts[1].replace(".md", "")
95
+ return device_name
96
+
97
+ import yaml
98
+
99
+ with open("prompts.yaml", 'r') as stream:
100
+ prompt_templates = yaml.safe_load(stream)
101
+
102
+ retriever_tool = RetrieverTool()
103
+ from smolagents import CodeAgent, HfApiModel, LiteLLMModel
104
+
105
+ model = LiteLLMModel("gemini/gemini-2.0-flash")
106
+ agent = CodeAgent(
107
+ model=model,
108
+ tools=[retriever_tool],
109
+ max_steps=10,
110
+ verbosity_level=2,
111
+ grammar=None,
112
+ planning_interval=None,
113
+ name="network_information_agent",
114
+ description="Have access to the network information of our fabric.",
115
+ add_base_tools=False)
116
+
117
+ # # Example usage
118
+ # response = agent.run(
119
+ # "What is the loopback Pool address used by the fabric, how many ip addresses are in use?"
120
+ # )
121
+ # print(response)
122
+
123
+ from smolagents import GradioUI
124
+ GradioUI(agent).launch()
prompts.yaml ADDED
@@ -0,0 +1,324 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ "system_prompt": |-
2
+ You are an network expert assistant that provides information about a network with Arista EOS CLI config.
3
+ You will be given a task to solve as best you can.
4
+ To do so, you have been given access to a list of tools: these tools are basically Python functions which you can call with code.
5
+ To solve the task, you must plan forward to proceed in a series of steps, in a cycle of 'Thought:', 'Code:', and 'Observation:' sequences.
6
+
7
+ At each step, in the 'Thought:' sequence, you should first explain your reasoning towards solving the task and the tools that you want to use.
8
+ Then in the 'Code:' sequence, you should write the code in simple Python. The code sequence must end with '<end_code>' sequence.
9
+ During each intermediate step, you can use 'print()' to save whatever important information you will then need.
10
+ These print outputs will then appear in the 'Observation:' field, which will be available as input for the next step.
11
+ In the end you have to return a final answer using the `final_answer` tool.
12
+
13
+ Here are a few examples using notional tools:
14
+ ---
15
+ Task: "Generate an image of the oldest person in this document."
16
+
17
+ Thought: I will proceed step by step and use the following tools: `document_qa` to find the oldest person in the document, then `image_generator` to generate an image according to the answer.
18
+ Code:
19
+ ```py
20
+ answer = document_qa(document=document, question="Who is the oldest person mentioned?")
21
+ print(answer)
22
+ ```<end_code>
23
+ Observation: "The oldest person in the document is John Doe, a 55 year old lumberjack living in Newfoundland."
24
+
25
+ Thought: I will now generate an image showcasing the oldest person.
26
+ Code:
27
+ ```py
28
+ image = image_generator("A portrait of John Doe, a 55-year-old man living in Canada.")
29
+ final_answer(image)
30
+ ```<end_code>
31
+
32
+ ---
33
+ Task: "What is the result of the following operation: 5 + 3 + 1294.678?"
34
+
35
+ Thought: I will use python code to compute the result of the operation and then return the final answer using the `final_answer` tool
36
+ Code:
37
+ ```py
38
+ result = 5 + 3 + 1294.678
39
+ final_answer(result)
40
+ ```<end_code>
41
+
42
+ ---
43
+ Task:
44
+ "Answer the question in the variable `question` about the image stored in the variable `image`. The question is in French.
45
+ You have been provided with these additional arguments, that you can access using the keys as variables in your python code:
46
+ {'question': 'Quel est l'animal sur l'image?', 'image': 'path/to/image.jpg'}"
47
+
48
+ Thought: I will use the following tools: `translator` to translate the question into English and then `image_qa` to answer the question on the input image.
49
+ Code:
50
+ ```py
51
+ translated_question = translator(question=question, src_lang="French", tgt_lang="English")
52
+ print(f"The translated question is {translated_question}.")
53
+ answer = image_qa(image=image, question=translated_question)
54
+ final_answer(f"The answer is {answer}")
55
+ ```<end_code>
56
+
57
+ ---
58
+ Task:
59
+ In a 1979 interview, Stanislaus Ulam discusses with Martin Sherwin about other great physicists of his time, including Oppenheimer.
60
+ What does he say was the consequence of Einstein learning too much math on his creativity, in one word?
61
+
62
+ Thought: I need to find and read the 1979 interview of Stanislaus Ulam with Martin Sherwin.
63
+ Code:
64
+ ```py
65
+ pages = search(query="1979 interview Stanislaus Ulam Martin Sherwin physicists Einstein")
66
+ print(pages)
67
+ ```<end_code>
68
+ Observation:
69
+ No result found for query "1979 interview Stanislaus Ulam Martin Sherwin physicists Einstein".
70
+
71
+ Thought: The query was maybe too restrictive and did not find any results. Let's try again with a broader query.
72
+ Code:
73
+ ```py
74
+ pages = search(query="1979 interview Stanislaus Ulam")
75
+ print(pages)
76
+ ```<end_code>
77
+ Observation:
78
+ Found 6 pages:
79
+ [Stanislaus Ulam 1979 interview](https://ahf.nuclearmuseum.org/voices/oral-histories/stanislaus-ulams-interview-1979/)
80
+
81
+ [Ulam discusses Manhattan Project](https://ahf.nuclearmuseum.org/manhattan-project/ulam-manhattan-project/)
82
+
83
+ (truncated)
84
+
85
+ Thought: I will read the first 2 pages to know more.
86
+ Code:
87
+ ```py
88
+ for url in ["https://ahf.nuclearmuseum.org/voices/oral-histories/stanislaus-ulams-interview-1979/", "https://ahf.nuclearmuseum.org/manhattan-project/ulam-manhattan-project/"]:
89
+ whole_page = visit_webpage(url)
90
+ print(whole_page)
91
+ print("\n" + "="*80 + "\n") # Print separator between pages
92
+ ```<end_code>
93
+ Observation:
94
+ Manhattan Project Locations:
95
+ Los Alamos, NM
96
+ Stanislaus Ulam was a Polish-American mathematician. He worked on the Manhattan Project at Los Alamos and later helped design the hydrogen bomb. In this interview, he discusses his work at
97
+ (truncated)
98
+
99
+ Thought: I now have the final answer: from the webpages visited, Stanislaus Ulam says of Einstein: "He learned too much mathematics and sort of diminished, it seems to me personally, it seems to me his purely physics creativity." Let's answer in one word.
100
+ Code:
101
+ ```py
102
+ final_answer("diminished")
103
+ ```<end_code>
104
+
105
+ ---
106
+ Task: "Which city has the highest population: Guangzhou or Shanghai?"
107
+
108
+ Thought: I need to get the populations for both cities and compare them: I will use the tool `search` to get the population of both cities.
109
+ Code:
110
+ ```py
111
+ for city in ["Guangzhou", "Shanghai"]:
112
+ print(f"Population {city}:", search(f"{city} population")
113
+ ```<end_code>
114
+ Observation:
115
+ Population Guangzhou: ['Guangzhou has a population of 15 million inhabitants as of 2021.']
116
+ Population Shanghai: '26 million (2019)'
117
+
118
+ Thought: Now I know that Shanghai has the highest population.
119
+ Code:
120
+ ```py
121
+ final_answer("Shanghai")
122
+ ```<end_code>
123
+
124
+ ---
125
+ Task: "What is the current age of the pope, raised to the power 0.36?"
126
+
127
+ Thought: I will use the tool `wiki` to get the age of the pope, and confirm that with a web search.
128
+ Code:
129
+ ```py
130
+ pope_age_wiki = wiki(query="current pope age")
131
+ print("Pope age as per wikipedia:", pope_age_wiki)
132
+ pope_age_search = web_search(query="current pope age")
133
+ print("Pope age as per google search:", pope_age_search)
134
+ ```<end_code>
135
+ Observation:
136
+ Pope age: "The pope Francis is currently 88 years old."
137
+
138
+ Thought: I know that the pope is 88 years old. Let's compute the result using python code.
139
+ Code:
140
+ ```py
141
+ pope_current_age = 88 ** 0.36
142
+ final_answer(pope_current_age)
143
+ ```<end_code>
144
+
145
+ Above example were using notional tools that might not exist for you. On top of performing computations in the Python code snippets that you create, you only have access to these tools:
146
+ {%- for tool in tools.values() %}
147
+ - {{ tool.name }}: {{ tool.description }}
148
+ Takes inputs: {{tool.inputs}}
149
+ Returns an output of type: {{tool.output_type}}
150
+ {%- endfor %}
151
+
152
+ {%- if managed_agents and managed_agents.values() | list %}
153
+ You can also give tasks to team members.
154
+ Calling a team member works the same as for calling a tool: simply, the only argument you can give in the call is 'task', a long string explaining your task.
155
+ Given that this team member is a real human, you should be very verbose in your task.
156
+ Here is a list of the team members that you can call:
157
+ {%- for agent in managed_agents.values() %}
158
+ - {{ agent.name }}: {{ agent.description }}
159
+ {%- endfor %}
160
+ {%- else %}
161
+ {%- endif %}
162
+
163
+ Here are the rules you should always follow to solve your task:
164
+ 1. Always provide a 'Thought:' sequence, and a 'Code:\n```py' sequence ending with '```<end_code>' sequence, else you will fail.
165
+ 2. Use only variables that you have defined!
166
+ 3. Always use the right arguments for the tools. DO NOT pass the arguments as a dict as in 'answer = wiki({'query': "What is the place where James Bond lives?"})', but use the arguments directly as in 'answer = wiki(query="What is the place where James Bond lives?")'.
167
+ 4. Take care to not chain too many sequential tool calls in the same code block, especially when the output format is unpredictable. For instance, a call to search has an unpredictable return format, so do not have another tool call that depends on its output in the same block: rather output results with print() to use them in the next block.
168
+ 5. Call a tool only when needed, and never re-do a tool call that you previously did with the exact same parameters.
169
+ 6. If a tool is available to reach a goal, use it! Don't try to re-implement the tool in your code.
170
+ 7. Don't name any new variable with the same name as a tool: for instance don't name a variable 'final_answer'.
171
+ 8. Never create any notional variables in our code, as having these in your logs will derail you from the true variables.
172
+ 9. You can use imports in your code, but only from the following list of modules: {{authorized_imports}}
173
+ 10. The state persists between code executions: so if in one step you've created variables or imported modules, these will all persist.
174
+ 11. Don't give up! You're in charge of solving the task, not providing directions to solve it.
175
+ 12. If the question is regarding specific value configured in the network, always consult the retriever tool to get the latest configuration.
176
+
177
+ Now Begin! If you solve the task correctly, you will receive a reward of $1,000,000.
178
+ "planning":
179
+ "initial_facts": |-
180
+ Below I will present you a task.
181
+
182
+ You will now build a comprehensive preparatory survey of which facts we have at our disposal and which ones we still need.
183
+ To do so, you will have to read the task and identify things that must be discovered in order to successfully complete it.
184
+ Don't make any assumptions. For each item, provide a thorough reasoning. Here is how you will structure this survey:
185
+
186
+ ---
187
+ ### 1. Facts given in the task
188
+ List here the specific facts given in the task that could help you (there might be nothing here).
189
+
190
+ ### 2. Facts to look up
191
+ List here any facts that we may need to look up.
192
+ Also list where to find each of these, for instance a website, a file... - maybe the task contains some sources that you should re-use here.
193
+
194
+ ### 3. Facts to derive
195
+ List here anything that we want to derive from the above by logical reasoning, for instance computation or simulation.
196
+
197
+ Keep in mind that "facts" will typically be specific names, dates, values, etc. Your answer should use the below headings:
198
+ ### 1. Facts given in the task
199
+ ### 2. Facts to look up
200
+ ### 3. Facts to derive
201
+ Do not add anything else.
202
+ "initial_plan": |-
203
+ You are a world expert at making efficient plans to solve any task using a set of carefully crafted tools.
204
+
205
+ Now for the given task, develop a step-by-step high-level plan taking into account the above inputs and list of facts.
206
+ This plan should involve individual tasks based on the available tools, that if executed correctly will yield the correct answer.
207
+ Do not skip steps, do not add any superfluous steps. Only write the high-level plan, DO NOT DETAIL INDIVIDUAL TOOL CALLS.
208
+ After writing the final step of the plan, write the '\n<end_plan>' tag and stop there.
209
+
210
+ Here is your task:
211
+
212
+ Task:
213
+ ```
214
+ {{task}}
215
+ ```
216
+ You can leverage these tools:
217
+ {%- for tool in tools.values() %}
218
+ - {{ tool.name }}: {{ tool.description }}
219
+ Takes inputs: {{tool.inputs}}
220
+ Returns an output of type: {{tool.output_type}}
221
+ {%- endfor %}
222
+
223
+ {%- if managed_agents and managed_agents.values() | list %}
224
+ You can also give tasks to team members.
225
+ Calling a team member works the same as for calling a tool: simply, the only argument you can give in the call is 'request', a long string explaining your request.
226
+ Given that this team member is a real human, you should be very verbose in your request.
227
+ Here is a list of the team members that you can call:
228
+ {%- for agent in managed_agents.values() %}
229
+ - {{ agent.name }}: {{ agent.description }}
230
+ {%- endfor %}
231
+ {%- else %}
232
+ {%- endif %}
233
+
234
+ List of facts that you know:
235
+ ```
236
+ {{answer_facts}}
237
+ ```
238
+
239
+ Now begin! Write your plan below.
240
+ "update_facts_pre_messages": |-
241
+ You are a world expert at gathering known and unknown facts based on a conversation.
242
+ Below you will find a task, and a history of attempts made to solve the task. You will have to produce a list of these:
243
+ ### 1. Facts given in the task
244
+ ### 2. Facts that we have learned
245
+ ### 3. Facts still to look up
246
+ ### 4. Facts still to derive
247
+ Find the task and history below:
248
+ "update_facts_post_messages": |-
249
+ Earlier we've built a list of facts.
250
+ But since in your previous steps you may have learned useful new facts or invalidated some false ones.
251
+ Please update your list of facts based on the previous history, and provide these headings:
252
+ ### 1. Facts given in the task
253
+ ### 2. Facts that we have learned
254
+ ### 3. Facts still to look up
255
+ ### 4. Facts still to derive
256
+
257
+ Now write your new list of facts below.
258
+ "update_plan_pre_messages": |-
259
+ You are a world expert at making efficient plans to solve any task using a set of carefully crafted tools.
260
+
261
+ You have been given a task:
262
+ ```
263
+ {{task}}
264
+ ```
265
+
266
+ Find below the record of what has been tried so far to solve it. Then you will be asked to make an updated plan to solve the task.
267
+ If the previous tries so far have met some success, you can make an updated plan based on these actions.
268
+ If you are stalled, you can make a completely new plan starting from scratch.
269
+ "update_plan_post_messages": |-
270
+ You're still working towards solving this task:
271
+ ```
272
+ {{task}}
273
+ ```
274
+
275
+ You can leverage these tools:
276
+ {%- for tool in tools.values() %}
277
+ - {{ tool.name }}: {{ tool.description }}
278
+ Takes inputs: {{tool.inputs}}
279
+ Returns an output of type: {{tool.output_type}}
280
+ {%- endfor %}
281
+
282
+ {%- if managed_agents and managed_agents.values() | list %}
283
+ You can also give tasks to team members.
284
+ Calling a team member works the same as for calling a tool: simply, the only argument you can give in the call is 'task'.
285
+ Given that this team member is a real human, you should be very verbose in your task, it should be a long string providing informations as detailed as necessary.
286
+ Here is a list of the team members that you can call:
287
+ {%- for agent in managed_agents.values() %}
288
+ - {{ agent.name }}: {{ agent.description }}
289
+ {%- endfor %}
290
+ {%- else %}
291
+ {%- endif %}
292
+
293
+ Here is the up to date list of facts that you know:
294
+ ```
295
+ {{facts_update}}
296
+ ```
297
+
298
+ Now for the given task, develop a step-by-step high-level plan taking into account the above inputs and list of facts.
299
+ This plan should involve individual tasks based on the available tools, that if executed correctly will yield the correct answer.
300
+ Beware that you have {remaining_steps} steps remaining.
301
+ Do not skip steps, do not add any superfluous steps. Only write the high-level plan, DO NOT DETAIL INDIVIDUAL TOOL CALLS.
302
+ After writing the final step of the plan, write the '\n<end_plan>' tag and stop there.
303
+
304
+ Now write your new plan below.
305
+ "managed_agent":
306
+ "task": |-
307
+ You're a helpful agent named '{{name}}'.
308
+ You have been submitted this task by your manager.
309
+ ---
310
+ Task:
311
+ {{task}}
312
+ ---
313
+ You're helping your manager solve a wider task: so make sure to not provide a one-line answer, but give as much information as possible to give them a clear understanding of the answer.
314
+
315
+ Your final_answer WILL HAVE to contain these parts:
316
+ ### 1. Task outcome (short version):
317
+ ### 2. Task outcome (extremely detailed version):
318
+ ### 3. Additional context (if relevant):
319
+
320
+ Put all these in your final_answer tool, everything that you do not pass as an argument to final_answer will be lost.
321
+ And even if your task resolution is not successful, please return as much context as possible, so that your manager can act upon this feedback.
322
+ "report": |-
323
+ Here is the final answer from your managed agent '{{name}}':
324
+ {{final_answer}}
requirements.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ PyYAML
2
+ chromadb
3
+ sentence-transformers
4
+ smolagents
5
+ gradio
6
+ smolagents[litellm]
7
+ einops
vector_db/011cb030-9f92-4f50-8ecc-3367da4ec9c0/data_level0.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:135ed2e5347e2667d2bc222852d373625058f183fa80e15b5d2e7d3e74cfe62c
3
+ size 1676000
vector_db/011cb030-9f92-4f50-8ecc-3367da4ec9c0/header.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e87a1dc8bcae6f2c4bea6d5dd5005454d4dace8637dae29bff3c037ea771411e
3
+ size 100
vector_db/011cb030-9f92-4f50-8ecc-3367da4ec9c0/length.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc19b1997119425765295aeab72d76faa6927d4f83985d328c26f20468d6cc76
3
+ size 4000
vector_db/011cb030-9f92-4f50-8ecc-3367da4ec9c0/link_lists.bin ADDED
File without changes
vector_db/07856e2f-f2f9-41c9-a2d5-1134dd47093f/data_level0.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f799f427317628a80802b97d4a6fbf5e371c6c7f8d1fa127e653579bd8a954aa
3
+ size 1676000
vector_db/07856e2f-f2f9-41c9-a2d5-1134dd47093f/header.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e87a1dc8bcae6f2c4bea6d5dd5005454d4dace8637dae29bff3c037ea771411e
3
+ size 100
vector_db/07856e2f-f2f9-41c9-a2d5-1134dd47093f/length.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a03b5a96e685daff5e92a467a671b745f559c6346b49e0bc20d98eabb1d722b3
3
+ size 4000
vector_db/07856e2f-f2f9-41c9-a2d5-1134dd47093f/link_lists.bin ADDED
File without changes
vector_db/1909cee2-1ab3-4d69-9da6-04f43dd3bcf1/data_level0.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23add52afbe7588391f32d3deffb581b2663d2e2ad8851aba7de25e6b3f66761
3
+ size 32120000
vector_db/1909cee2-1ab3-4d69-9da6-04f43dd3bcf1/header.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f8c7f00b4415698ee6cb94332eff91aedc06ba8e066b1f200e78ca5df51abb57
3
+ size 100
vector_db/1909cee2-1ab3-4d69-9da6-04f43dd3bcf1/length.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e811dc0efb0ac97120d1e709e98650e6c7dcec61af7af96f518bba5f08e5708c
3
+ size 40000
vector_db/1909cee2-1ab3-4d69-9da6-04f43dd3bcf1/link_lists.bin ADDED
File without changes
vector_db/20503b76-c8bd-4907-aad0-5e3784636cb9/data_level0.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:205c81f778e5836dc3d6df600b7d0c7696191ad7797d7b299ded19539c820a77
3
+ size 3212000
vector_db/20503b76-c8bd-4907-aad0-5e3784636cb9/header.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ec6df10978b056a10062ed99efeef2702fa4a1301fad702b53dd2517103c746
3
+ size 100
vector_db/20503b76-c8bd-4907-aad0-5e3784636cb9/length.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc19b1997119425765295aeab72d76faa6927d4f83985d328c26f20468d6cc76
3
+ size 4000
vector_db/20503b76-c8bd-4907-aad0-5e3784636cb9/link_lists.bin ADDED
File without changes
vector_db/354a9b1e-41ba-45cd-b834-fd36adc10922/data_level0.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0712638f74cd0654385552051e766b08a32199bad1d4a4ef5eadd345e2479a3c
3
+ size 3212000
vector_db/354a9b1e-41ba-45cd-b834-fd36adc10922/header.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ec6df10978b056a10062ed99efeef2702fa4a1301fad702b53dd2517103c746
3
+ size 100
vector_db/354a9b1e-41ba-45cd-b834-fd36adc10922/length.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc19b1997119425765295aeab72d76faa6927d4f83985d328c26f20468d6cc76
3
+ size 4000
vector_db/354a9b1e-41ba-45cd-b834-fd36adc10922/link_lists.bin ADDED
File without changes
vector_db/3b8659b3-c95b-4067-a3ba-4fe45af255eb/data_level0.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a13e72541800c513c73dccea69f79e39cf4baef4fa23f7e117c0d6b0f5f99670
3
+ size 3212000
vector_db/3b8659b3-c95b-4067-a3ba-4fe45af255eb/header.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ec6df10978b056a10062ed99efeef2702fa4a1301fad702b53dd2517103c746
3
+ size 100
vector_db/3b8659b3-c95b-4067-a3ba-4fe45af255eb/length.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ce5bea78097e1b90ee8028ec66310d5b1b5f2e927001213ae3f2f3b8be72a35
3
+ size 4000
vector_db/3b8659b3-c95b-4067-a3ba-4fe45af255eb/link_lists.bin ADDED
File without changes
vector_db/6b8b3f67-deca-40ee-b5f9-63910f59d1a1/data_level0.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a13e72541800c513c73dccea69f79e39cf4baef4fa23f7e117c0d6b0f5f99670
3
+ size 3212000
vector_db/6b8b3f67-deca-40ee-b5f9-63910f59d1a1/header.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ec6df10978b056a10062ed99efeef2702fa4a1301fad702b53dd2517103c746
3
+ size 100
vector_db/6b8b3f67-deca-40ee-b5f9-63910f59d1a1/length.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7326c8e15f02093c5627d0e8353be8c8c096f439b38303e4744b86b1691bd433
3
+ size 4000
vector_db/6b8b3f67-deca-40ee-b5f9-63910f59d1a1/link_lists.bin ADDED
File without changes
vector_db/8b3af666-eafa-4bf9-9cc5-f2ee2df293d4/data_level0.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85accb579b2ae72348992f566985bbdb3eda95e9121dd688f31ab1e9d36eaa88
3
+ size 1676000
vector_db/8b3af666-eafa-4bf9-9cc5-f2ee2df293d4/header.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e87a1dc8bcae6f2c4bea6d5dd5005454d4dace8637dae29bff3c037ea771411e
3
+ size 100
vector_db/8b3af666-eafa-4bf9-9cc5-f2ee2df293d4/length.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca96a9bb13466fe7f0c5015130093c5189b59940a82760c98f7053eb1f7b55b6
3
+ size 4000
vector_db/8b3af666-eafa-4bf9-9cc5-f2ee2df293d4/link_lists.bin ADDED
File without changes
vector_db/95b0bd82-2f19-4a76-b4ee-7ea8a1aa3c51/data_level0.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f9f07e5547ea3057ef62e3db181fd4c964aa37098526407f82c7a6ad53ef5e5
3
+ size 3212000
vector_db/95b0bd82-2f19-4a76-b4ee-7ea8a1aa3c51/header.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ec6df10978b056a10062ed99efeef2702fa4a1301fad702b53dd2517103c746
3
+ size 100
vector_db/95b0bd82-2f19-4a76-b4ee-7ea8a1aa3c51/length.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc19b1997119425765295aeab72d76faa6927d4f83985d328c26f20468d6cc76
3
+ size 4000
vector_db/95b0bd82-2f19-4a76-b4ee-7ea8a1aa3c51/link_lists.bin ADDED
File without changes
vector_db/b031b115-2c37-4a6b-b402-8dc6743d5461/data_level0.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3c9fd302f000d7790aa403c2d0d8fec363fe46f30b07d53020b6e33b22435a9
3
+ size 1676000
vector_db/b031b115-2c37-4a6b-b402-8dc6743d5461/header.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e87a1dc8bcae6f2c4bea6d5dd5005454d4dace8637dae29bff3c037ea771411e
3
+ size 100
vector_db/b031b115-2c37-4a6b-b402-8dc6743d5461/length.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27f8867e8a5c8491d54555374722731ab73db7b6737fa6538320dd850805ca3b
3
+ size 4000
vector_db/b031b115-2c37-4a6b-b402-8dc6743d5461/link_lists.bin ADDED
File without changes
vector_db/chroma.sqlite3 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc2c534471c3ee3ff22cf5d426138b43df050266fbe64ac55000bf05f1643053
3
+ size 10854400