import os import gradio as gr from dotenv import load_dotenv from smolagents import CodeAgent, HfApiModel # Load environment variables load_dotenv() # Get API token and model settings from environment variables hf_api_token = os.getenv("HF_API_TOKEN") model_name = os.getenv("MODEL_NAME", "meta-llama/Llama-3.3-70B-Instruct") max_new_tokens = int(os.getenv("MAX_NEW_TOKENS", 500)) temperature = float(os.getenv("TEMPERATURE", 0.7)) from chatbot import agent # Chat history to maintain conversation context def relavant_info(message, history): """ Relevant information for the user Args: message (str): The input text to search through letter (str): The letter to search for Returns: str: The relevant information extracted from the message """ response = agent.run(message) return response # Create Gradio interface # demo = gr.ChatInterface( # fn=relavant_info, # title="Smol-Agent Chatbot", # description="Ask me anything!", # examples=[ # "What is machine learning?", # "How does a transformer model work?", # "Explain quantum computing in simple terms" # ], # theme=gr.themes.Soft() # ) with gr.Blocks(theme=gr.themes.Default(primary_hue="sky")) as ui: gr.Markdown("# Deep Research") query_textbox = gr.Textbox(label="What topic would you like to research?") run_button = gr.Button("Run", variant="primary") report = gr.Markdown(label="Report") run_button.click(fn=relavant_info, inputs=query_textbox, outputs=report) query_textbox.submit(fn=relavant_info, inputs=query_textbox, outputs=report) # Launch the app if __name__ == "__main__": ui.launch(mcp_server=True)