Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# main.py
|
2 |
+
from __future__ import annotations
|
3 |
+
import os
|
4 |
+
import io
|
5 |
+
import torch
|
6 |
+
import numpy as np
|
7 |
+
import torchaudio
|
8 |
+
import nltk
|
9 |
+
import gradio as gr
|
10 |
+
from pydub import AudioSegment
|
11 |
+
|
12 |
+
from transformers import (
|
13 |
+
SeamlessM4TFeatureExtractor,
|
14 |
+
SeamlessM4TTokenizer,
|
15 |
+
SeamlessM4Tv2ForSpeechToText,
|
16 |
+
AutoTokenizer,
|
17 |
+
AutoFeatureExtractor
|
18 |
+
)
|
19 |
+
from parler_tts import ParlerTTSForConditionalGeneration
|
20 |
+
|
21 |
+
nltk.download('punkt')
|
22 |
+
|
23 |
+
# === CONFIG ===
|
24 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
25 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
26 |
+
torch_dtype = torch.bfloat16 if device != "cpu" else torch.float32
|
27 |
+
SAMPLE_RATE = 16000
|
28 |
+
DEFAULT_TARGET_LANGUAGE = "Hindi"
|
29 |
+
|
30 |
+
# === Load translation model ===
|
31 |
+
trans_model = SeamlessM4Tv2ForSpeechToText.from_pretrained(
|
32 |
+
"ai4bharat/indic-seamless", torch_dtype=torch_dtype, token=HF_TOKEN
|
33 |
+
).to(device)
|
34 |
+
processor = SeamlessM4TFeatureExtractor.from_pretrained("ai4bharat/indic-seamless", token=HF_TOKEN)
|
35 |
+
tokenizer = SeamlessM4TTokenizer.from_pretrained("ai4bharat/indic-seamless", token=HF_TOKEN)
|
36 |
+
|
37 |
+
# === Load TTS models ===
|
38 |
+
tts_repo = "ai4bharat/indic-parler-tts-pretrained"
|
39 |
+
tts_finetuned_repo = "ai4bharat/indic-parler-tts"
|
40 |
+
tts_model = ParlerTTSForConditionalGeneration.from_pretrained(
|
41 |
+
tts_repo, attn_implementation="eager", torch_dtype=torch_dtype
|
42 |
+
).to(device)
|
43 |
+
tts_finetuned_model = ParlerTTSForConditionalGeneration.from_pretrained(
|
44 |
+
tts_finetuned_repo, attn_implementation="eager", torch_dtype=torch_dtype
|
45 |
+
).to(device)
|
46 |
+
desc_tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-large")
|
47 |
+
text_tokenizer = AutoTokenizer.from_pretrained(tts_repo)
|
48 |
+
|
49 |
+
tts_sampling_rate = tts_model.audio_encoder.config.sampling_rate
|
50 |
+
|
51 |
+
# === Utilities ===
|
52 |
+
def numpy_to_mp3(audio_array, sampling_rate):
|
53 |
+
if np.issubdtype(audio_array.dtype, np.floating):
|
54 |
+
audio_array = (audio_array / np.max(np.abs(audio_array))) * 32767
|
55 |
+
audio_array = audio_array.astype(np.int16)
|
56 |
+
segment = AudioSegment(
|
57 |
+
audio_array.tobytes(),
|
58 |
+
frame_rate=sampling_rate,
|
59 |
+
sample_width=audio_array.dtype.itemsize,
|
60 |
+
channels=1
|
61 |
+
)
|
62 |
+
mp3_io = io.BytesIO()
|
63 |
+
segment.export(mp3_io, format="mp3", bitrate="320k")
|
64 |
+
return mp3_io.getvalue()
|
65 |
+
|
66 |
+
def chunk_text(text, max_words=25):
|
67 |
+
sentences = nltk.sent_tokenize(text)
|
68 |
+
chunks, curr = [], ""
|
69 |
+
for s in sentences:
|
70 |
+
candidate = f"{curr} {s}".strip()
|
71 |
+
if len(candidate.split()) > max_words:
|
72 |
+
if curr: chunks.append(curr)
|
73 |
+
curr = s
|
74 |
+
else:
|
75 |
+
curr = candidate
|
76 |
+
if curr: chunks.append(curr)
|
77 |
+
return chunks
|
78 |
+
|
79 |
+
# === Translation ===
|
80 |
+
def translate_audio(input_audio, target_language):
|
81 |
+
audio, orig_sr = torchaudio.load(input_audio)
|
82 |
+
audio = torchaudio.functional.resample(audio, orig_sr, SAMPLE_RATE)
|
83 |
+
inputs = processor(audio, sampling_rate=SAMPLE_RATE, return_tensors="pt").to(device, dtype=torch_dtype)
|
84 |
+
target_lang_code = "hin" # default Hindi, change as needed
|
85 |
+
gen_ids = trans_model.generate(**inputs, tgt_lang=target_lang_code)[0]
|
86 |
+
return tokenizer.decode(gen_ids, skip_special_tokens=True)
|
87 |
+
|
88 |
+
# === TTS generation ===
|
89 |
+
def generate_tts(text, description, use_finetuned=False):
|
90 |
+
model = tts_finetuned_model if use_finetuned else tts_model
|
91 |
+
inputs = desc_tokenizer(description, return_tensors="pt").to(device)
|
92 |
+
chunks = chunk_text(text)
|
93 |
+
|
94 |
+
all_audio = []
|
95 |
+
for chunk in chunks:
|
96 |
+
prompt = text_tokenizer(chunk, return_tensors="pt").to(device)
|
97 |
+
gen = model.generate(
|
98 |
+
input_ids=inputs.input_ids,
|
99 |
+
attention_mask=inputs.attention_mask,
|
100 |
+
prompt_input_ids=prompt.input_ids,
|
101 |
+
prompt_attention_mask=prompt.attention_mask,
|
102 |
+
do_sample=True,
|
103 |
+
return_dict_in_generate=True
|
104 |
+
)
|
105 |
+
if hasattr(gen, 'sequences') and hasattr(gen, 'audios_length'):
|
106 |
+
audio = gen.sequences[0, :gen.audios_length[0]]
|
107 |
+
audio_np = audio.float().cpu().numpy().flatten()
|
108 |
+
all_audio.append(audio_np)
|
109 |
+
combined = np.concatenate(all_audio)
|
110 |
+
return numpy_to_mp3(combined, sampling_rate=tts_sampling_rate)
|
111 |
+
|
112 |
+
# === Gradio UI ===
|
113 |
+
with gr.Blocks() as demo:
|
114 |
+
gr.Markdown("## 🎙️ Speech-to-Text → Text-to-Speech Demo")
|
115 |
+
|
116 |
+
with gr.Row():
|
117 |
+
with gr.Column():
|
118 |
+
input_audio = gr.Audio(label="Upload or record audio", type="filepath")
|
119 |
+
target_language = gr.Textbox(label="Target language (default Hindi)", value="Hindi")
|
120 |
+
btn_translate = gr.Button("Translate to text")
|
121 |
+
with gr.Column():
|
122 |
+
translated_text = gr.Textbox(label="Translated text")
|
123 |
+
|
124 |
+
btn_translate.click(
|
125 |
+
translate_audio,
|
126 |
+
inputs=[input_audio, target_language],
|
127 |
+
outputs=translated_text
|
128 |
+
)
|
129 |
+
|
130 |
+
with gr.Row():
|
131 |
+
with gr.Column():
|
132 |
+
voice_desc = gr.Textbox(label="Voice description", value="A calm, neutral Indian voice, clear audio.")
|
133 |
+
use_finetuned = gr.Checkbox(label="Use fine-tuned TTS", value=True)
|
134 |
+
btn_tts = gr.Button("Generate speech")
|
135 |
+
with gr.Column():
|
136 |
+
generated_audio = gr.Audio(label="Generated speech", format="mp3", autoplay=True)
|
137 |
+
|
138 |
+
btn_tts.click(
|
139 |
+
generate_tts,
|
140 |
+
inputs=[translated_text, voice_desc, use_finetuned],
|
141 |
+
outputs=generated_audio
|
142 |
+
)
|
143 |
+
|
144 |
+
demo.launch(share=True)
|