Spaces:
Sleeping
Sleeping
| import torch | |
| import evaluate | |
| import re | |
| import base64 | |
| import io | |
| import matplotlib.pyplot as plt | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| import spaces # Assuming this is a custom or predefined library for GPU handling | |
| # --------------------------------------------------------------------------- | |
| # 1. Simple Test Dataset to Run GPU Calls On | |
| # --------------------------------------------------------------------------- | |
| test_data = [ | |
| {"question": "What is 2+2?", "answer": "4"}, | |
| {"question": "What is 3*3?", "answer": "9"}, | |
| {"question": "What is 10/2?", "answer": "5"}, | |
| ] | |
| # --------------------------------------------------------------------------- | |
| # 2. Load metric | |
| # --------------------------------------------------------------------------- | |
| accuracy_metric = evaluate.load("accuracy") | |
| # --------------------------------------------------------------------------- | |
| # 4. Inference helper functions | |
| # --------------------------------------------------------------------------- | |
| def generate_answer(question, model, tokenizer): | |
| """ | |
| Generates an answer using Mistral's instruction format. | |
| """ | |
| # Mistral instruction format | |
| prompt = f"""<s>[INST] {question}. Provide only the numerical answer. [/INST]""" | |
| inputs = tokenizer(prompt, return_tensors="pt").to('cuda') | |
| with torch.no_grad(): | |
| outputs = model.generate( | |
| **inputs, | |
| max_new_tokens=50, | |
| pad_token_id=tokenizer.pad_token_id, | |
| eos_token_id=tokenizer.eos_token_id | |
| ) | |
| text_output = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| # Remove the original question from the output | |
| return text_output.replace(question, "").strip() | |
| def parse_answer(model_output): | |
| """ | |
| Extract numeric answer from model's text output. | |
| """ | |
| # Look for numbers (including decimals) | |
| match = re.search(r"(-?\d*\.?\d+)", model_output) | |
| if match: | |
| return match.group(1) | |
| return model_output.strip() | |
| # Allow up to 2 minutes for full evaluation | |
| def evaluate_toy_dataset(model, tokenizer): | |
| predictions = [] | |
| references = [] | |
| raw_outputs = [] # Store full model outputs for display | |
| for sample in test_data: | |
| question = sample["question"] | |
| reference_answer = sample["answer"] | |
| # Model inference | |
| model_output = generate_answer(question, model, tokenizer) | |
| predicted_answer = parse_answer(model_output) | |
| predictions.append(predicted_answer) | |
| references.append(reference_answer) | |
| raw_outputs.append({ | |
| "question": question, | |
| "model_output": model_output, | |
| "parsed_answer": predicted_answer, | |
| "reference": reference_answer | |
| }) | |
| # Normalize answers | |
| def normalize_answer(ans): | |
| return str(ans).lower().strip() | |
| norm_preds = [normalize_answer(p) for p in predictions] | |
| norm_refs = [normalize_answer(r) for r in references] | |
| # Compute accuracy | |
| results = accuracy_metric.compute(predictions=norm_preds, references=norm_refs) | |
| accuracy = results["accuracy"] | |
| # Create visualization | |
| fig, ax = plt.subplots(figsize=(8, 6)) | |
| correct_count = sum(p == r for p, r in zip(norm_preds, norm_refs)) | |
| incorrect_count = len(test_data) - correct_count | |
| bars = ax.bar(["Correct", "Incorrect"], | |
| [correct_count, incorrect_count], | |
| color=["#2ecc71", "#e74c3c"]) | |
| # Add value labels on bars | |
| for bar in bars: | |
| height = bar.get_height() | |
| ax.text(bar.get_x() + bar.get_width()/2., height, | |
| f'{int(height)}', | |
| ha='center', va='bottom') | |
| ax.set_title("Evaluation Results") | |
| ax.set_ylabel("Count") | |
| ax.set_ylim([0, len(test_data) + 0.5]) | |
| # Convert plot to base64 | |
| buf = io.BytesIO() | |
| plt.savefig(buf, format="png", bbox_inches='tight', dpi=300) | |
| buf.seek(0) | |
| plt.close(fig) | |
| data = base64.b64encode(buf.read()).decode("utf-8") | |
| # Create detailed results HTML | |
| details_html = """ | |
| <div style="margin-top: 20px;"> | |
| <h3>Detailed Results:</h3> | |
| <table style="width:100%; border-collapse: collapse;"> | |
| <tr style="background-color: #f5f5f5;"> | |
| <th style="padding: 8px; border: 1px solid #ddd;">Question</th> | |
| <th style="padding: 8px; border: 1px solid #ddd;">Model Output</th> | |
| <th style="padding: 8px; border: 1px solid #ddd;">Parsed Answer</th> | |
| <th style="padding: 8px; border: 1px solid #ddd;">Reference</th> | |
| </tr> | |
| """ | |
| for result in raw_outputs: | |
| details_html += f""" | |
| <tr> | |
| <td style="padding: 8px; border: 1px solid #ddd;">{result['question']}</td> | |
| <td style="padding: 8px; border: 1px solid #ddd;">{result['model_output']}</td> | |
| <td style="padding: 8px; border: 1px solid #ddd;">{result['parsed_answer']}</td> | |
| <td style="padding: 8px; border: 1px solid #ddd;">{result['reference']}</td> | |
| </tr> | |
| """ | |
| details_html += "</table></div>" | |
| full_html = f""" | |
| <div> | |
| <img src="data:image/png;base64,{data}" style="width:100%; max-width:600px;"> | |
| {details_html} | |
| </div> | |
| """ | |
| return f"Accuracy: {accuracy:.2f}", full_html | |