Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,12 +1,19 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
import os
|
|
|
|
| 3 |
from huggingface_hub import login
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
import
|
| 7 |
-
import
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
# Read token and login
|
| 12 |
hf_token = os.getenv("HF_READ_WRITE_TOKEN")
|
|
@@ -16,516 +23,184 @@ else:
|
|
| 16 |
print("⚠️ No HF_READ_WRITE_TOKEN found in environment")
|
| 17 |
|
| 18 |
# ---------------------------------------------------------------------------
|
| 19 |
-
#
|
| 20 |
# ---------------------------------------------------------------------------
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
# 2. MMLU-Pro Evaluation
|
| 25 |
-
# ---------------------------------------------------------------------------
|
| 26 |
-
@spaces.GPU(duration=240)
|
| 27 |
-
def run_mmlu_evaluation(subject_selection_mode, num_subjects, selected_subjects, num_shots, all_questions, num_questions, progress=gr.Progress()):
|
| 28 |
-
"""
|
| 29 |
-
Runs the MMLU evaluation with the specified parameters.
|
| 30 |
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
num_subjects (int): Number of subjects to evaluate (1-14)
|
| 34 |
-
selected_subjects (list): List of specific subjects to evaluate
|
| 35 |
-
num_shots (int): Number of few-shot examples (0-5)
|
| 36 |
-
all_questions (bool): Whether to evaluate all questions per subject
|
| 37 |
-
num_questions (int): Number of examples per subject (1-100 or all)
|
| 38 |
-
progress (gr.Progress): Progress indicator
|
| 39 |
-
"""
|
| 40 |
-
try:
|
| 41 |
-
# Convert parameters if needed
|
| 42 |
-
if subject_selection_mode == "all":
|
| 43 |
-
num_subjects = -1
|
| 44 |
-
selected_subjects = []
|
| 45 |
-
elif subject_selection_mode == "specific":
|
| 46 |
-
num_subjects = len(selected_subjects) if selected_subjects else -1
|
| 47 |
-
|
| 48 |
-
if all_questions:
|
| 49 |
-
num_questions = -1
|
| 50 |
-
|
| 51 |
-
# Run evaluation with timing
|
| 52 |
-
start_time = time.time()
|
| 53 |
-
results = evaluate_mmlu_pro(
|
| 54 |
-
model_name,
|
| 55 |
-
num_subjects=num_subjects,
|
| 56 |
-
num_questions=num_questions,
|
| 57 |
-
num_shots=num_shots,
|
| 58 |
-
specific_subjects=selected_subjects if subject_selection_mode == "specific" else None
|
| 59 |
-
)
|
| 60 |
-
elapsed_time = time.time() - start_time
|
| 61 |
-
|
| 62 |
-
# Format results
|
| 63 |
-
overall_acc = results["overall_accuracy"]
|
| 64 |
-
min_subject, min_acc = results["min_accuracy_subject"]
|
| 65 |
-
max_subject, max_acc = results["max_accuracy_subject"]
|
| 66 |
-
|
| 67 |
-
# Create DataFrame from results table
|
| 68 |
-
results_df = pd.DataFrame(results["full_accuracy_table"])
|
| 69 |
-
|
| 70 |
-
# Calculate totals for the overall row
|
| 71 |
-
total_samples = results_df['Num_samples'].sum()
|
| 72 |
-
total_correct = results_df['Num_correct'].sum()
|
| 73 |
-
|
| 74 |
-
# Create overall row
|
| 75 |
-
overall_row = pd.DataFrame({
|
| 76 |
-
'Subject': ['**Overall**'],
|
| 77 |
-
'Num_samples': [total_samples],
|
| 78 |
-
'Num_correct': [total_correct],
|
| 79 |
-
'Accuracy': [overall_acc]
|
| 80 |
-
})
|
| 81 |
-
|
| 82 |
-
# Concatenate overall row with results
|
| 83 |
-
results_df = pd.concat([overall_row, results_df], ignore_index=True)
|
| 84 |
-
|
| 85 |
-
# Format the report
|
| 86 |
-
report = (
|
| 87 |
-
f"### Overall Results\n"
|
| 88 |
-
f"* Overall Accuracy: {overall_acc:.3f}\n"
|
| 89 |
-
f"* Best Performance: {max_subject} ({max_acc:.3f})\n"
|
| 90 |
-
f"* Worst Performance: {min_subject} ({min_acc:.3f})\n"
|
| 91 |
-
f"* Evaluation completed in {elapsed_time:.2f} seconds\n"
|
| 92 |
-
)
|
| 93 |
-
|
| 94 |
-
# Return values that re-enable UI components after completion
|
| 95 |
-
return (report,
|
| 96 |
-
results_df,
|
| 97 |
-
gr.update(interactive=True),
|
| 98 |
-
gr.update(visible=False),
|
| 99 |
-
gr.update(interactive=True),
|
| 100 |
-
gr.update(interactive=True),
|
| 101 |
-
gr.update(interactive=True),
|
| 102 |
-
gr.update(interactive=True),
|
| 103 |
-
gr.update(interactive=True),
|
| 104 |
-
gr.update(visible=True))
|
| 105 |
-
|
| 106 |
-
except Exception as e:
|
| 107 |
-
# Handle errors gracefully
|
| 108 |
-
error_trace = traceback.format_exc()
|
| 109 |
-
error_message = f"### Error during evaluation\n```\n{error_trace}\n```"
|
| 110 |
-
|
| 111 |
-
# Re-enable UI components on error
|
| 112 |
-
return (error_message,
|
| 113 |
-
None,
|
| 114 |
-
gr.update(interactive=True),
|
| 115 |
-
gr.update(visible=False),
|
| 116 |
-
gr.update(interactive=True),
|
| 117 |
-
gr.update(interactive=True),
|
| 118 |
-
gr.update(interactive=True),
|
| 119 |
-
gr.update(interactive=True),
|
| 120 |
-
gr.update(interactive=True),
|
| 121 |
-
gr.update(visible=False))
|
| 122 |
-
|
| 123 |
-
# ---------------------------------------------------------------------------
|
| 124 |
-
# 3. Gradio Interface
|
| 125 |
-
# ---------------------------------------------------------------------------
|
| 126 |
-
with gr.Blocks(css="""
|
| 127 |
-
#preview_header {
|
| 128 |
-
margin-bottom: 10px;
|
| 129 |
-
margin-top: 5px;
|
| 130 |
-
}
|
| 131 |
-
#preview_table {
|
| 132 |
-
background-color: #f8f9fa;
|
| 133 |
-
border-radius: 8px;
|
| 134 |
-
padding: 10px;
|
| 135 |
-
}
|
| 136 |
-
h1 {
|
| 137 |
-
text-align: center;
|
| 138 |
-
}
|
| 139 |
-
.section-divider {
|
| 140 |
-
border-top: 1px solid #ddd;
|
| 141 |
-
margin: 12px 0;
|
| 142 |
-
}
|
| 143 |
-
.config-box {
|
| 144 |
-
border: 1px solid #ddd;
|
| 145 |
-
border-radius: 8px;
|
| 146 |
-
padding: 15px;
|
| 147 |
-
margin: 10px;
|
| 148 |
-
background-color: #f9f9f9;
|
| 149 |
-
}
|
| 150 |
-
""") as demo:
|
| 151 |
-
gr.Markdown("# Head-to-Head Model Evaluation Comparator")
|
| 152 |
-
gr.Markdown("""
|
| 153 |
-
This demo evaluates two models (or one model with two different configs), head-to-head, on a benchmark dataset.
|
| 154 |
|
| 155 |
-
|
|
|
|
| 156 |
|
| 157 |
-
|
| 158 |
-
|
| 159 |
|
| 160 |
-
#
|
| 161 |
-
|
| 162 |
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
choices=["(Select Dataset)", "MMLU-Pro"],
|
| 166 |
-
value="(Select Dataset)",
|
| 167 |
-
label="Dataset",
|
| 168 |
-
info="Select a dataset to perform the Head-to-Head Evaluation on. Available Datasets: [MMLU-Pro](https://huggingface.co/datasets/TIGER-Lab/MMLU-Pro)"
|
| 169 |
-
)
|
| 170 |
-
preview_toggle = gr.Button("Show Dataset Preview", interactive=False, variant="secondary")
|
| 171 |
|
| 172 |
-
#
|
| 173 |
-
with gr.Column(visible=False) as dataset_preview_container:
|
| 174 |
-
gr.Markdown("## Dataset Preview", elem_id="preview_header")
|
| 175 |
-
preview_output = gr.DataFrame(
|
| 176 |
-
interactive=False,
|
| 177 |
-
wrap=True,
|
| 178 |
-
elem_id="preview_table"
|
| 179 |
-
)
|
| 180 |
-
# Add a divider instead of lots of space
|
| 181 |
-
gr.Markdown("<div class='section-divider'></div>")
|
| 182 |
-
|
| 183 |
-
# Preview data state to store the loaded preview data
|
| 184 |
-
preview_data_state = gr.State(None)
|
| 185 |
-
|
| 186 |
-
# MMLU Config Container - Initially hidden until dataset is selected
|
| 187 |
-
with gr.Column(visible=False) as mmlu_config_container:
|
| 188 |
-
gr.Markdown("## (B) Select Dataset Configuration Options")
|
| 189 |
-
|
| 190 |
-
with gr.Row():
|
| 191 |
-
# Left column for subject selection
|
| 192 |
-
with gr.Column(scale=1):
|
| 193 |
-
with gr.Group(elem_classes=["config-box"]):
|
| 194 |
-
gr.Markdown("### Choose Subjects")
|
| 195 |
-
|
| 196 |
-
subject_selection_mode = gr.Radio(
|
| 197 |
-
choices=["Evaluate All Subjects", "Choose Number of Subjects", "Specify which Subjects to Evaluate"],
|
| 198 |
-
value="Evaluate All Subjects",
|
| 199 |
-
label="Subject Selection Mode"
|
| 200 |
-
)
|
| 201 |
-
|
| 202 |
-
# Subject number slider - initially hidden, shown when "Choose Number of Subjects" is selected
|
| 203 |
-
with gr.Column(visible=False) as num_subjects_container:
|
| 204 |
-
num_subjects_slider = gr.Slider(
|
| 205 |
-
minimum=1,
|
| 206 |
-
maximum=14, # Will be updated dynamically based on preview data
|
| 207 |
-
value=1,
|
| 208 |
-
step=1,
|
| 209 |
-
label="Number of Subjects",
|
| 210 |
-
info="Number of subjects to evaluate. They will be loaded in alphabetical order."
|
| 211 |
-
)
|
| 212 |
-
|
| 213 |
-
# Subject checkboxes - initially hidden, shown when "Specify which Subjects to Evaluate" is selected
|
| 214 |
-
with gr.Column(visible=False) as specific_subjects_container:
|
| 215 |
-
# Will be populated dynamically from the preview data
|
| 216 |
-
specific_subjects = gr.CheckboxGroup(
|
| 217 |
-
choices=[], # Will be populated from preview data
|
| 218 |
-
label="Select Specific Subjects",
|
| 219 |
-
info="Select which specific subjects to evaluate"
|
| 220 |
-
)
|
| 221 |
-
|
| 222 |
-
# Right column for few-shot examples
|
| 223 |
-
with gr.Column(scale=1):
|
| 224 |
-
with gr.Group(elem_classes=["config-box"]):
|
| 225 |
-
gr.Markdown("### Few-shot Configuration")
|
| 226 |
-
|
| 227 |
-
num_shots_slider = gr.Slider(
|
| 228 |
-
minimum=0,
|
| 229 |
-
maximum=5,
|
| 230 |
-
value=5,
|
| 231 |
-
step=1,
|
| 232 |
-
label="Number of Few-shot Examples",
|
| 233 |
-
info="Number of examples to use for few-shot learning (0-5). They will be loaded in order of question_id."
|
| 234 |
-
)
|
| 235 |
-
|
| 236 |
-
# Add a small space
|
| 237 |
-
gr.Markdown(" ")
|
| 238 |
-
|
| 239 |
-
with gr.Row():
|
| 240 |
-
all_questions_checkbox = gr.Checkbox(
|
| 241 |
-
label="Evaluate All Questions",
|
| 242 |
-
value=False,
|
| 243 |
-
info="When checked, evaluates all available questions for each subject"
|
| 244 |
-
)
|
| 245 |
-
questions_info_text = gr.Markdown(visible=False, value="**All questions across the selected subjects will be evaluated**")
|
| 246 |
-
|
| 247 |
-
with gr.Row(elem_id="questions_selection_row"):
|
| 248 |
-
questions_container = gr.Column(scale=1, elem_id="questions_slider_container")
|
| 249 |
-
|
| 250 |
-
with questions_container:
|
| 251 |
-
num_questions_slider = gr.Slider(
|
| 252 |
-
minimum=1,
|
| 253 |
-
maximum=100,
|
| 254 |
-
value=20,
|
| 255 |
-
step=1,
|
| 256 |
-
label="Questions per Subject",
|
| 257 |
-
info="Choose a subset of questions (1-100) per subject. They will be loaded in order of question_id.",
|
| 258 |
-
interactive=True
|
| 259 |
-
)
|
| 260 |
-
|
| 261 |
-
with gr.Row():
|
| 262 |
-
with gr.Column(scale=1):
|
| 263 |
-
eval_mmlu_button = gr.Button("Run MMLU-Pro Evaluation", variant="primary", interactive=True)
|
| 264 |
-
cancel_mmlu_button = gr.Button("Cancel Evaluation", variant="stop", visible=False)
|
| 265 |
-
|
| 266 |
-
# Results Section - Initially hidden
|
| 267 |
-
with gr.Column(visible=False) as results_container:
|
| 268 |
-
results_output = gr.Markdown(label="Evaluation Results")
|
| 269 |
-
|
| 270 |
-
# Results table - Initially hidden until evaluation completes
|
| 271 |
-
with gr.Column(visible=False) as results_table_container:
|
| 272 |
-
with gr.Row():
|
| 273 |
-
results_table = gr.DataFrame(
|
| 274 |
-
interactive=True,
|
| 275 |
-
label="Detailed Results (Sortable)",
|
| 276 |
-
visible=True
|
| 277 |
-
)
|
| 278 |
-
|
| 279 |
-
# Track evaluation state
|
| 280 |
evaluation_state = gr.State({"running": False})
|
| 281 |
-
|
| 282 |
-
# Track preview visibility state
|
| 283 |
preview_visibility = gr.State(False)
|
| 284 |
|
| 285 |
-
# Function to process dataset preview data
|
| 286 |
-
def get_subject_choices_from_preview(preview_data):
|
| 287 |
-
if not preview_data or 'subject_counts' not in preview_data:
|
| 288 |
-
print("FAILURE HERE")
|
| 289 |
-
return [], 0
|
| 290 |
-
|
| 291 |
-
# Get subject counts from preview data
|
| 292 |
-
subject_counts = preview_data['subject_counts']
|
| 293 |
-
|
| 294 |
-
# Sort subjects alphabetically
|
| 295 |
-
subjects = sorted(subject_counts.keys())
|
| 296 |
-
|
| 297 |
-
# Format as "Subject (n=count)"
|
| 298 |
-
formatted_subjects = [f"{subject} (n={subject_counts[subject]})" for subject in subjects]
|
| 299 |
-
print("Formatted Subjects", formatted_subjects)
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
return formatted_subjects, len(subjects)
|
| 303 |
-
|
| 304 |
-
# Function to load preview data and update UI
|
| 305 |
-
def load_dataset_preview(dataset):
|
| 306 |
-
if dataset == "MMLU-Pro":
|
| 307 |
-
# Load the preview data
|
| 308 |
-
preview_data = mmlupro_dataset_preview(regenerate_preview=True)
|
| 309 |
-
|
| 310 |
-
# Extract subject choices and count
|
| 311 |
-
subject_choices, subject_count = get_subject_choices_from_preview(preview_data)
|
| 312 |
-
|
| 313 |
-
# Update the UI components
|
| 314 |
-
return (
|
| 315 |
-
preview_data, # Store the preview data
|
| 316 |
-
gr.update(choices=subject_choices), # Update checkbox choices
|
| 317 |
-
gr.update(maximum=subject_count, value=1) # Update slider max
|
| 318 |
-
)
|
| 319 |
-
return None, gr.update(), gr.update()
|
| 320 |
-
|
| 321 |
-
# Function to show/hide configuration based on selected dataset
|
| 322 |
-
def update_interface_based_on_dataset(dataset, current_visibility):
|
| 323 |
-
if dataset == "MMLU-Pro":
|
| 324 |
-
return (
|
| 325 |
-
gr.update(visible=True), # mmlu_config_container
|
| 326 |
-
gr.update(visible=True), # results_container
|
| 327 |
-
gr.update(interactive=True), # preview_toggle
|
| 328 |
-
gr.update(visible=False), # dataset_preview_container - hide it initially
|
| 329 |
-
False, # Reset preview_visibility to False
|
| 330 |
-
gr.update(value="Show Dataset Preview") # Reset button text
|
| 331 |
-
)
|
| 332 |
-
else:
|
| 333 |
-
return (
|
| 334 |
-
gr.update(visible=False), # mmlu_config_container
|
| 335 |
-
gr.update(visible=False), # results_container
|
| 336 |
-
gr.update(interactive=False), # preview_toggle
|
| 337 |
-
gr.update(visible=False), # dataset_preview_container - hide when no dataset
|
| 338 |
-
False, # Reset preview_visibility to False
|
| 339 |
-
gr.update(value="Show Dataset Preview") # Reset button text
|
| 340 |
-
)
|
| 341 |
-
|
| 342 |
# Connect dataset dropdown to show/hide appropriate configuration and load preview data
|
| 343 |
-
|
| 344 |
fn=load_dataset_preview,
|
| 345 |
-
inputs=[
|
| 346 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
| 347 |
).then(
|
| 348 |
fn=update_interface_based_on_dataset,
|
| 349 |
-
inputs=[
|
| 350 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 351 |
)
|
| 352 |
|
| 353 |
-
# Function to toggle dataset preview visibility
|
| 354 |
-
def toggle_preview(dataset, preview_visibility, preview_data):
|
| 355 |
-
# Toggle the visibility state
|
| 356 |
-
is_visible = not preview_visibility
|
| 357 |
-
|
| 358 |
-
# Update button text based on new state
|
| 359 |
-
button_text = "Hide Dataset Preview" if is_visible else "Show Dataset Preview"
|
| 360 |
-
|
| 361 |
-
# Format and show preview if becoming visible
|
| 362 |
-
if is_visible and dataset == "MMLU-Pro":
|
| 363 |
-
formatted_preview = format_preview_for_display(preview_data)
|
| 364 |
-
return is_visible, gr.update(visible=True), formatted_preview, gr.update(value=button_text)
|
| 365 |
-
elif is_visible:
|
| 366 |
-
# For other datasets (not implemented yet)
|
| 367 |
-
return is_visible, gr.update(visible=True), None, gr.update(value=button_text)
|
| 368 |
-
else:
|
| 369 |
-
# Hiding the preview
|
| 370 |
-
return is_visible, gr.update(visible=False), None, gr.update(value=button_text)
|
| 371 |
-
|
| 372 |
# Connect preview toggle to show/hide dataset information
|
| 373 |
-
preview_toggle.click(
|
| 374 |
fn=toggle_preview,
|
| 375 |
-
inputs=[
|
| 376 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 377 |
)
|
| 378 |
|
| 379 |
-
# Function to update UI based on subject selection mode
|
| 380 |
-
def update_subject_selection_ui(mode):
|
| 381 |
-
if mode == "Evaluate All Subjects":
|
| 382 |
-
return gr.update(visible=False), gr.update(visible=False)
|
| 383 |
-
elif mode == "Choose Number of Subjects":
|
| 384 |
-
return gr.update(visible=True), gr.update(visible=False)
|
| 385 |
-
else: # "Specify which Subjects to Evaluate"
|
| 386 |
-
return gr.update(visible=False), gr.update(visible=True)
|
| 387 |
-
|
| 388 |
# Connect subject selection mode to UI updates
|
| 389 |
-
subject_selection_mode.change(
|
| 390 |
fn=update_subject_selection_ui,
|
| 391 |
-
inputs=[
|
| 392 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 393 |
)
|
| 394 |
|
| 395 |
# Update interface based on all_questions checkbox
|
| 396 |
-
|
| 397 |
-
if checked:
|
| 398 |
-
return gr.update(visible=False), gr.update(visible=True)
|
| 399 |
-
else:
|
| 400 |
-
return gr.update(visible=True), gr.update(visible=False)
|
| 401 |
-
|
| 402 |
-
all_questions_checkbox.change(
|
| 403 |
fn=update_questions_interface,
|
| 404 |
-
inputs=[
|
| 405 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 406 |
)
|
| 407 |
|
| 408 |
-
#
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
"Evaluation already in progress. Please wait.",
|
| 435 |
-
None,
|
| 436 |
-
gr.update(visible=False)
|
| 437 |
]
|
| 438 |
-
|
| 439 |
-
# Update state to running
|
| 440 |
-
state["running"] = True
|
| 441 |
-
|
| 442 |
-
return [
|
| 443 |
-
state,
|
| 444 |
-
gr.update(interactive=False), # subject_selection_mode
|
| 445 |
-
gr.update(interactive=False), # num_subjects_slider
|
| 446 |
-
gr.update(interactive=False), # specific_subjects
|
| 447 |
-
gr.update(interactive=False), # num_shots_slider
|
| 448 |
-
gr.update(interactive=False), # all_questions_checkbox
|
| 449 |
-
gr.update(interactive=False), # num_questions_slider
|
| 450 |
-
gr.update(interactive=False), # eval_mmlu_button
|
| 451 |
-
gr.update(visible=True), # cancel_mmlu_button
|
| 452 |
-
"Starting evaluation...", # results_output
|
| 453 |
-
None, # results_table
|
| 454 |
-
gr.update(visible=False) # results_table_container
|
| 455 |
-
]
|
| 456 |
-
|
| 457 |
-
# Function to reset UI after evaluation
|
| 458 |
-
def finish_evaluation(state):
|
| 459 |
-
state["running"] = False
|
| 460 |
-
return state
|
| 461 |
-
|
| 462 |
-
# Function to handle cancel button click
|
| 463 |
-
def cancel_evaluation(state):
|
| 464 |
-
# Note: This doesn't actually stop the evaluation process
|
| 465 |
-
# It only updates the UI state to appear canceled
|
| 466 |
-
state["running"] = False
|
| 467 |
-
return [
|
| 468 |
-
state,
|
| 469 |
-
gr.update(interactive=True), # subject_selection_mode
|
| 470 |
-
gr.update(interactive=True), # num_subjects_slider
|
| 471 |
-
gr.update(interactive=True), # specific_subjects
|
| 472 |
-
gr.update(interactive=True), # num_shots_slider
|
| 473 |
-
gr.update(interactive=True), # all_questions_checkbox
|
| 474 |
-
gr.update(interactive=True), # num_questions_slider
|
| 475 |
-
gr.update(interactive=True), # eval_mmlu_button
|
| 476 |
-
gr.update(visible=False), # cancel_mmlu_button
|
| 477 |
-
"⚠️ Evaluation canceled by user (note: backend process may continue running)", # results_output
|
| 478 |
-
None, # results_table
|
| 479 |
-
gr.update(visible=False) # results_table_container
|
| 480 |
-
]
|
| 481 |
|
| 482 |
-
# Connect
|
| 483 |
-
|
| 484 |
fn=start_evaluation,
|
| 485 |
inputs=[evaluation_state],
|
| 486 |
outputs=[
|
| 487 |
evaluation_state,
|
| 488 |
-
subject_selection_mode,
|
| 489 |
-
num_subjects_slider,
|
| 490 |
-
specific_subjects,
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
|
|
|
| 499 |
]
|
| 500 |
).then(
|
| 501 |
-
fn=lambda mode, num, subjects,
|
| 502 |
run_mmlu_evaluation(
|
| 503 |
get_subject_mode_param(mode),
|
| 504 |
num,
|
| 505 |
get_subject_names(subjects),
|
| 506 |
-
shots,
|
| 507 |
all_q,
|
| 508 |
-
num_q
|
|
|
|
|
|
|
|
|
|
|
|
|
| 509 |
),
|
| 510 |
inputs=[
|
| 511 |
-
subject_selection_mode,
|
| 512 |
-
num_subjects_slider,
|
| 513 |
-
specific_subjects,
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 517 |
],
|
| 518 |
outputs=[
|
| 519 |
-
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
subject_selection_mode,
|
| 524 |
-
num_subjects_slider,
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
|
| 529 |
]
|
| 530 |
).then(
|
| 531 |
fn=finish_evaluation,
|
|
@@ -534,23 +209,25 @@ with gr.Blocks(css="""
|
|
| 534 |
)
|
| 535 |
|
| 536 |
# Connect cancel button
|
| 537 |
-
|
| 538 |
fn=cancel_evaluation,
|
| 539 |
inputs=[evaluation_state],
|
| 540 |
outputs=[
|
| 541 |
evaluation_state,
|
| 542 |
-
subject_selection_mode,
|
| 543 |
-
num_subjects_slider,
|
| 544 |
-
specific_subjects,
|
| 545 |
-
|
| 546 |
-
|
| 547 |
-
|
| 548 |
-
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
|
|
|
|
| 553 |
]
|
| 554 |
)
|
| 555 |
|
| 556 |
-
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
import gradio as gr
|
| 3 |
from huggingface_hub import login
|
| 4 |
+
|
| 5 |
+
# Import modules
|
| 6 |
+
from modules.ui_components import CSS, create_header, create_results_section, create_action_buttons
|
| 7 |
+
from modules.dataset_config import (create_dataset_section, create_mmlu_config_section,
|
| 8 |
+
load_dataset_preview, update_interface_based_on_dataset,
|
| 9 |
+
toggle_preview, update_subject_selection_ui,
|
| 10 |
+
update_questions_interface, get_subject_mode_param,
|
| 11 |
+
get_subject_names)
|
| 12 |
+
from modules.app_models_config import (create_model_config_section, update_eval_button_state,
|
| 13 |
+
get_model_configs)
|
| 14 |
+
from modules.evaluation import run_mmlu_evaluation
|
| 15 |
+
from utils.state_management import (start_evaluation, finish_evaluation,
|
| 16 |
+
cancel_evaluation, handle_evaluation_results)
|
| 17 |
|
| 18 |
# Read token and login
|
| 19 |
hf_token = os.getenv("HF_READ_WRITE_TOKEN")
|
|
|
|
| 23 |
print("⚠️ No HF_READ_WRITE_TOKEN found in environment")
|
| 24 |
|
| 25 |
# ---------------------------------------------------------------------------
|
| 26 |
+
# Gradio Interface
|
| 27 |
# ---------------------------------------------------------------------------
|
| 28 |
+
with gr.Blocks(css=CSS) as demo:
|
| 29 |
+
# Create header
|
| 30 |
+
header_components = create_header()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
+
# Create dataset section (Section A)
|
| 33 |
+
dataset_components = create_dataset_section()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
+
# Create MMLU config section (Section B)
|
| 36 |
+
mmlu_components = create_mmlu_config_section()
|
| 37 |
|
| 38 |
+
# Create model config section (Section C)
|
| 39 |
+
model_components = create_model_config_section()
|
| 40 |
|
| 41 |
+
# Create results section
|
| 42 |
+
results_components = create_results_section()
|
| 43 |
|
| 44 |
+
# Create action buttons
|
| 45 |
+
action_components = create_action_buttons()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
+
# State tracking
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
evaluation_state = gr.State({"running": False})
|
|
|
|
|
|
|
| 49 |
preview_visibility = gr.State(False)
|
| 50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
# Connect dataset dropdown to show/hide appropriate configuration and load preview data
|
| 52 |
+
dataset_components['dropdown'].change(
|
| 53 |
fn=load_dataset_preview,
|
| 54 |
+
inputs=[dataset_components['dropdown']],
|
| 55 |
+
outputs=[
|
| 56 |
+
dataset_components['preview_data_state'],
|
| 57 |
+
mmlu_components['specific_subjects'],
|
| 58 |
+
mmlu_components['num_subjects_slider']
|
| 59 |
+
],
|
| 60 |
).then(
|
| 61 |
fn=update_interface_based_on_dataset,
|
| 62 |
+
inputs=[
|
| 63 |
+
dataset_components['dropdown'],
|
| 64 |
+
preview_visibility
|
| 65 |
+
],
|
| 66 |
+
outputs=[
|
| 67 |
+
mmlu_components['container'],
|
| 68 |
+
model_components['container'],
|
| 69 |
+
results_components['container'],
|
| 70 |
+
dataset_components['preview_toggle'],
|
| 71 |
+
dataset_components['preview_container'],
|
| 72 |
+
preview_visibility,
|
| 73 |
+
dataset_components['preview_toggle']
|
| 74 |
+
]
|
| 75 |
)
|
| 76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
# Connect preview toggle to show/hide dataset information
|
| 78 |
+
dataset_components['preview_toggle'].click(
|
| 79 |
fn=toggle_preview,
|
| 80 |
+
inputs=[
|
| 81 |
+
dataset_components['dropdown'],
|
| 82 |
+
preview_visibility,
|
| 83 |
+
dataset_components['preview_data_state']
|
| 84 |
+
],
|
| 85 |
+
outputs=[
|
| 86 |
+
preview_visibility,
|
| 87 |
+
dataset_components['preview_container'],
|
| 88 |
+
dataset_components['preview_output'],
|
| 89 |
+
dataset_components['preview_toggle']
|
| 90 |
+
]
|
| 91 |
)
|
| 92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
# Connect subject selection mode to UI updates
|
| 94 |
+
mmlu_components['subject_selection_mode'].change(
|
| 95 |
fn=update_subject_selection_ui,
|
| 96 |
+
inputs=[
|
| 97 |
+
mmlu_components['subject_selection_mode']
|
| 98 |
+
],
|
| 99 |
+
outputs=[
|
| 100 |
+
mmlu_components['num_subjects_container'],
|
| 101 |
+
mmlu_components['specific_subjects_container']
|
| 102 |
+
]
|
| 103 |
)
|
| 104 |
|
| 105 |
# Update interface based on all_questions checkbox
|
| 106 |
+
mmlu_components['all_questions_checkbox'].change(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
fn=update_questions_interface,
|
| 108 |
+
inputs=[
|
| 109 |
+
mmlu_components['all_questions_checkbox']
|
| 110 |
+
],
|
| 111 |
+
outputs=[
|
| 112 |
+
mmlu_components['num_questions_slider'],
|
| 113 |
+
mmlu_components['questions_info_text']
|
| 114 |
+
]
|
| 115 |
)
|
| 116 |
|
| 117 |
+
# Connect model config changes to validation
|
| 118 |
+
for component in [
|
| 119 |
+
model_components['model1_dropdown'],
|
| 120 |
+
model_components['model1_shots'],
|
| 121 |
+
model_components['model1_regex'],
|
| 122 |
+
model_components['model1_flash_attn'],
|
| 123 |
+
model_components['model2_dropdown'],
|
| 124 |
+
model_components['model2_shots'],
|
| 125 |
+
model_components['model2_regex'],
|
| 126 |
+
model_components['model2_flash_attn']
|
| 127 |
+
]:
|
| 128 |
+
component.change(
|
| 129 |
+
fn=update_eval_button_state,
|
| 130 |
+
inputs=[
|
| 131 |
+
model_components['model1_dropdown'],
|
| 132 |
+
model_components['model1_shots'],
|
| 133 |
+
model_components['model1_regex'],
|
| 134 |
+
model_components['model1_flash_attn'],
|
| 135 |
+
model_components['model2_dropdown'],
|
| 136 |
+
model_components['model2_shots'],
|
| 137 |
+
model_components['model2_regex'],
|
| 138 |
+
model_components['model2_flash_attn']
|
| 139 |
+
],
|
| 140 |
+
outputs=[
|
| 141 |
+
model_components['error_message'],
|
| 142 |
+
action_components['eval_button']
|
|
|
|
|
|
|
|
|
|
| 143 |
]
|
| 144 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
|
| 146 |
+
# Connect evaluation button with state tracking
|
| 147 |
+
action_components['eval_button'].click(
|
| 148 |
fn=start_evaluation,
|
| 149 |
inputs=[evaluation_state],
|
| 150 |
outputs=[
|
| 151 |
evaluation_state,
|
| 152 |
+
mmlu_components['subject_selection_mode'],
|
| 153 |
+
mmlu_components['num_subjects_slider'],
|
| 154 |
+
mmlu_components['specific_subjects'],
|
| 155 |
+
mmlu_components['all_questions_checkbox'],
|
| 156 |
+
mmlu_components['num_questions_slider'],
|
| 157 |
+
model_components['model1_dropdown'],
|
| 158 |
+
model_components['model2_dropdown'],
|
| 159 |
+
action_components['eval_button'],
|
| 160 |
+
action_components['cancel_button'],
|
| 161 |
+
results_components['output'],
|
| 162 |
+
results_components['table'],
|
| 163 |
+
results_components['table_container']
|
| 164 |
]
|
| 165 |
).then(
|
| 166 |
+
fn=lambda mode, num, subjects, all_q, num_q, m1, m1_shots, m1_regex, m1_flash, m2, m2_shots, m2_regex, m2_flash:
|
| 167 |
run_mmlu_evaluation(
|
| 168 |
get_subject_mode_param(mode),
|
| 169 |
num,
|
| 170 |
get_subject_names(subjects),
|
|
|
|
| 171 |
all_q,
|
| 172 |
+
num_q,
|
| 173 |
+
get_model_configs(
|
| 174 |
+
m1, m1_shots, m1_regex, m1_flash,
|
| 175 |
+
m2, m2_shots, m2_regex, m2_flash
|
| 176 |
+
)
|
| 177 |
),
|
| 178 |
inputs=[
|
| 179 |
+
mmlu_components['subject_selection_mode'],
|
| 180 |
+
mmlu_components['num_subjects_slider'],
|
| 181 |
+
mmlu_components['specific_subjects'],
|
| 182 |
+
mmlu_components['all_questions_checkbox'],
|
| 183 |
+
mmlu_components['num_questions_slider'],
|
| 184 |
+
model_components['model1_dropdown'],
|
| 185 |
+
model_components['model1_shots'],
|
| 186 |
+
model_components['model1_regex'],
|
| 187 |
+
model_components['model1_flash_attn'],
|
| 188 |
+
model_components['model2_dropdown'],
|
| 189 |
+
model_components['model2_shots'],
|
| 190 |
+
model_components['model2_regex'],
|
| 191 |
+
model_components['model2_flash_attn']
|
| 192 |
],
|
| 193 |
outputs=[
|
| 194 |
+
results_components['output'],
|
| 195 |
+
results_components['table'],
|
| 196 |
+
action_components['eval_button'],
|
| 197 |
+
action_components['cancel_button'],
|
| 198 |
+
mmlu_components['subject_selection_mode'],
|
| 199 |
+
mmlu_components['num_subjects_slider'],
|
| 200 |
+
mmlu_components['all_questions_checkbox'],
|
| 201 |
+
mmlu_components['num_questions_slider'],
|
| 202 |
+
model_components['model1_dropdown'],
|
| 203 |
+
results_components['table_container']
|
| 204 |
]
|
| 205 |
).then(
|
| 206 |
fn=finish_evaluation,
|
|
|
|
| 209 |
)
|
| 210 |
|
| 211 |
# Connect cancel button
|
| 212 |
+
action_components['cancel_button'].click(
|
| 213 |
fn=cancel_evaluation,
|
| 214 |
inputs=[evaluation_state],
|
| 215 |
outputs=[
|
| 216 |
evaluation_state,
|
| 217 |
+
mmlu_components['subject_selection_mode'],
|
| 218 |
+
mmlu_components['num_subjects_slider'],
|
| 219 |
+
mmlu_components['specific_subjects'],
|
| 220 |
+
mmlu_components['all_questions_checkbox'],
|
| 221 |
+
mmlu_components['num_questions_slider'],
|
| 222 |
+
model_components['model1_dropdown'],
|
| 223 |
+
model_components['model2_dropdown'],
|
| 224 |
+
action_components['eval_button'],
|
| 225 |
+
action_components['cancel_button'],
|
| 226 |
+
results_components['output'],
|
| 227 |
+
results_components['table'],
|
| 228 |
+
results_components['table_container']
|
| 229 |
]
|
| 230 |
)
|
| 231 |
|
| 232 |
+
if __name__ == "__main__":
|
| 233 |
+
demo.launch()
|