Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -103,79 +103,115 @@ def run_mmlu_evaluation(all_subjects, num_subjects, num_shots, all_questions, nu
|
|
103 |
gr.update(interactive=True), gr.update(interactive=True),
|
104 |
gr.update(interactive=True), gr.update(interactive=True),
|
105 |
gr.update(interactive=True))
|
106 |
-
|
107 |
# ---------------------------------------------------------------------------
|
108 |
# 3. Gradio Interface
|
109 |
# ---------------------------------------------------------------------------
|
110 |
with gr.Blocks() as demo:
|
111 |
-
gr.Markdown("#
|
112 |
gr.Markdown("""
|
113 |
-
This demo evaluates
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
""")
|
|
|
|
|
115 |
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
value=False,
|
123 |
-
info="When checked, evaluates all 14 MMLU-Pro subjects"
|
124 |
-
)
|
125 |
-
num_subjects_slider = gr.Slider(
|
126 |
-
minimum=1,
|
127 |
-
maximum=14,
|
128 |
-
value=14,
|
129 |
-
step=1,
|
130 |
-
label="Number of Subjects",
|
131 |
-
info="Number of subjects to evaluate (1-14). They will be loaded in alphabetical order.",
|
132 |
-
interactive=True
|
133 |
-
)
|
134 |
-
|
135 |
-
with gr.Row():
|
136 |
-
num_shots_slider = gr.Slider(
|
137 |
-
minimum=0,
|
138 |
-
maximum=5,
|
139 |
-
value=5,
|
140 |
-
step=1,
|
141 |
-
label="Number of Few-shot Examples",
|
142 |
-
info="Number of examples to use for few-shot learning (0-5)."
|
143 |
-
)
|
144 |
-
|
145 |
-
with gr.Row():
|
146 |
-
all_questions_checkbox = gr.Checkbox(
|
147 |
-
label="Evaluate All Questions",
|
148 |
-
value=False,
|
149 |
-
info="When checked, evaluates all available questions for each subject"
|
150 |
-
)
|
151 |
-
questions_info_text = gr.Markdown(visible=False, value="**All 12,032 questions across all subjects will be evaluated**")
|
152 |
-
|
153 |
-
with gr.Row(elem_id="questions_selection_row"):
|
154 |
-
questions_container = gr.Column(scale=1, elem_id="questions_slider_container")
|
155 |
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
|
167 |
-
|
168 |
-
|
169 |
-
eval_mmlu_button = gr.Button("Run MMLU-Pro Evaluation", variant="primary", interactive=True)
|
170 |
-
cancel_mmlu_button = gr.Button("Cancel Evaluation", variant="stop", visible=False)
|
171 |
results_output = gr.Markdown(label="Evaluation Results")
|
172 |
|
173 |
-
|
174 |
-
|
175 |
|
176 |
# Track evaluation state - used to prevent multiple evaluations
|
177 |
evaluation_state = gr.State({"running": False})
|
178 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
# Update num_subjects_slider interactivity based on all_subjects checkbox
|
180 |
def update_subjects_slider(checked):
|
181 |
return gr.update(interactive=not checked)
|
|
|
103 |
gr.update(interactive=True), gr.update(interactive=True),
|
104 |
gr.update(interactive=True), gr.update(interactive=True),
|
105 |
gr.update(interactive=True))
|
106 |
+
|
107 |
# ---------------------------------------------------------------------------
|
108 |
# 3. Gradio Interface
|
109 |
# ---------------------------------------------------------------------------
|
110 |
with gr.Blocks() as demo:
|
111 |
+
gr.Markdown("#Head to Head Evaluation Comparator")
|
112 |
gr.Markdown("""
|
113 |
+
This demo evaluates two models (or the same model with different configs) on a single dataset.
|
114 |
+
|
115 |
+
Available Datasets: [MMLU-Pro](https://huggingface.co/datasets/TIGER-Lab/MMLU-Pro), MMLU, MMLU-Redux.
|
116 |
+
Available Models: [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) .
|
117 |
+
|
118 |
+
Available Configs:
|
119 |
+
- Model Configs: a) Different quantizations, b) Using Flash Attention etc.
|
120 |
+
- Eval Dataset Configs include: i) subset to specific questions or subjects
|
121 |
+
- Eval Method Configs include: i) different prompts, ii) use different regexes for capturing the "answer" (especially for multiple-choice evals), iii) different eval scripts,
|
122 |
+
iv) different eval metrics.
|
123 |
""")
|
124 |
+
# Dataset Selection Section
|
125 |
+
gr.Markdown("### (A) Select Dataset for evaluation")
|
126 |
|
127 |
+
dataset_dropdown = gr.Dropdown(
|
128 |
+
choices=["MMLU-Pro"],
|
129 |
+
value=None,
|
130 |
+
label="Dataset",
|
131 |
+
info="Select a dataset to evaluate the model on"
|
132 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
+
# MMLU Config Container - Initially hidden until dataset is selected
|
135 |
+
with gr.Group(visible=False) as mmlu_config_container:
|
136 |
+
gr.Markdown("### MMLU-Pro Evaluation Configuration")
|
137 |
+
|
138 |
+
with gr.Row():
|
139 |
+
all_subjects_checkbox = gr.Checkbox(
|
140 |
+
label="Evaluate All Subjects",
|
141 |
+
value=False,
|
142 |
+
info="When checked, evaluates all 14 MMLU-Pro subjects"
|
143 |
+
)
|
144 |
+
num_subjects_slider = gr.Slider(
|
145 |
+
minimum=1,
|
146 |
+
maximum=14,
|
147 |
+
value=14,
|
148 |
+
step=1,
|
149 |
+
label="Number of Subjects",
|
150 |
+
info="Number of subjects to evaluate (1-14). They will be loaded in alphabetical order.",
|
151 |
+
interactive=True
|
152 |
+
)
|
153 |
+
|
154 |
+
with gr.Row():
|
155 |
+
num_shots_slider = gr.Slider(
|
156 |
+
minimum=0,
|
157 |
+
maximum=5,
|
158 |
+
value=5,
|
159 |
+
step=1,
|
160 |
+
label="Number of Few-shot Examples",
|
161 |
+
info="Number of examples to use for few-shot learning (0-5)."
|
162 |
+
)
|
163 |
+
|
164 |
+
with gr.Row():
|
165 |
+
all_questions_checkbox = gr.Checkbox(
|
166 |
+
label="Evaluate All Questions",
|
167 |
+
value=False,
|
168 |
+
info="When checked, evaluates all available questions for each subject"
|
169 |
+
)
|
170 |
+
questions_info_text = gr.Markdown(visible=False, value="**All 12,032 questions across all subjects will be evaluated**")
|
171 |
+
|
172 |
+
with gr.Row(elem_id="questions_selection_row"):
|
173 |
+
questions_container = gr.Column(scale=1, elem_id="questions_slider_container")
|
174 |
+
|
175 |
+
with questions_container:
|
176 |
+
num_questions_slider = gr.Slider(
|
177 |
+
minimum=1,
|
178 |
+
maximum=100,
|
179 |
+
value=20,
|
180 |
+
step=1,
|
181 |
+
label="Questions per Subject",
|
182 |
+
info="Choose a subset of questions (1-100) per subject. They will be loaded in order of question_id.",
|
183 |
+
interactive=True
|
184 |
+
)
|
185 |
+
|
186 |
+
with gr.Row():
|
187 |
+
with gr.Column(scale=1):
|
188 |
+
eval_mmlu_button = gr.Button("Run MMLU-Pro Evaluation", variant="primary", interactive=True)
|
189 |
+
cancel_mmlu_button = gr.Button("Cancel Evaluation", variant="stop", visible=False)
|
190 |
|
191 |
+
# Results Section - Initially hidden
|
192 |
+
with gr.Group(visible=False) as results_container:
|
|
|
|
|
193 |
results_output = gr.Markdown(label="Evaluation Results")
|
194 |
|
195 |
+
with gr.Row():
|
196 |
+
results_table = gr.DataFrame(interactive=True, label="Detailed Results (Sortable)", visible=True)
|
197 |
|
198 |
# Track evaluation state - used to prevent multiple evaluations
|
199 |
evaluation_state = gr.State({"running": False})
|
200 |
|
201 |
+
# Function to show configuration based on selected dataset
|
202 |
+
def update_interface_based_on_dataset(dataset):
|
203 |
+
if dataset == "MMLU-Pro":
|
204 |
+
return gr.update(visible=True), gr.update(visible=True)
|
205 |
+
else:
|
206 |
+
return gr.update(visible=False), gr.update(visible=False)
|
207 |
+
|
208 |
+
# Connect dataset dropdown to show/hide appropriate configuration
|
209 |
+
dataset_dropdown.change(
|
210 |
+
fn=update_interface_based_on_dataset,
|
211 |
+
inputs=[dataset_dropdown],
|
212 |
+
outputs=[mmlu_config_container, results_container]
|
213 |
+
)
|
214 |
+
|
215 |
# Update num_subjects_slider interactivity based on all_subjects checkbox
|
216 |
def update_subjects_slider(checked):
|
217 |
return gr.update(interactive=not checked)
|