rohansampath commited on
Commit
7798c9f
·
verified ·
1 Parent(s): a8af4f1

Update dataset_previews.py

Browse files
Files changed (1) hide show
  1. dataset_previews.py +12 -7
dataset_previews.py CHANGED
@@ -4,7 +4,7 @@ import pandas as pd
4
  import numpy as np
5
  from typing import Dict, Any, List, Tuple
6
  import collections
7
- from mmlu_pro_eval_adapted import load_mmlu_pro, preprocess # Import preprocess also
8
 
9
  def calculate_dataset_statistics():
10
  """
@@ -15,8 +15,12 @@ def calculate_dataset_statistics():
15
  """
16
  try:
17
  # Load MMLU-Pro data using the function from mmlu_pro_eval_adapted
18
- mmlu_data = load_mmlu_pro(num_subjects=-1, num_questions=-1)
19
 
 
 
 
 
20
  # Calculate total questions and questions per subject
21
  total_questions = 0
22
  subject_counts = {}
@@ -24,14 +28,15 @@ def calculate_dataset_statistics():
24
  # Count options per question
25
  options_counts = []
26
 
27
- for subject_name, subject_data in mmlu_data.items():
28
- num_questions = len(subject_data["test_examples"])
29
- subject_counts[subject_name] = num_questions
 
30
  total_questions += num_questions
31
 
32
  # Count options for each question
33
- for test_example in subject_data["test_examples"]:
34
- options_counts.append(len(test_example["options"]))
35
 
36
  max_options = max(options_counts)
37
  avg_options = sum(options_counts) / len(options_counts)
 
4
  import numpy as np
5
  from typing import Dict, Any, List, Tuple
6
  import collections
7
+ from mmlu_pro_eval_adapted import load_mmlu_pro
8
 
9
  def calculate_dataset_statistics():
10
  """
 
15
  """
16
  try:
17
  # Load MMLU-Pro data using the function from mmlu_pro_eval_adapted
18
+ test_df, val_df = load_mmlu_pro()
19
 
20
+ test_df = test_df.sort_values(['category', 'question_id'])
21
+
22
+ all_subjects = sorted(test_df['category'].unique())
23
+
24
  # Calculate total questions and questions per subject
25
  total_questions = 0
26
  subject_counts = {}
 
28
  # Count options per question
29
  options_counts = []
30
 
31
+ for subject in all_subjects:
32
+ test_samples = test_df[test_df['category'] == subject]
33
+ num_questions = len(test_samples)
34
+ subject_counts[subject] = num_questions
35
  total_questions += num_questions
36
 
37
  # Count options for each question
38
+ for sample in test_samples:
39
+ options_counts.append(len(sample["options"]))
40
 
41
  max_options = max(options_counts)
42
  avg_options = sum(options_counts) / len(options_counts)