Spaces:
Sleeping
Sleeping
Create mmlu_eval
Browse files
mmlu_eval
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import random
|
| 3 |
+
import evaluate
|
| 4 |
+
from datasets import load_dataset
|
| 5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 6 |
+
|
| 7 |
+
# Load Accuracy Metric
|
| 8 |
+
accuracy_metric = evaluate.load("accuracy")
|
| 9 |
+
|
| 10 |
+
# Load MMLU dataset
|
| 11 |
+
mmlu_dataset = load_dataset("lukaemon/mmlu")
|
| 12 |
+
|
| 13 |
+
def generate_answer(model, tokenizer, question):
|
| 14 |
+
"""
|
| 15 |
+
Generates an answer using Mistral's instruction format.
|
| 16 |
+
"""
|
| 17 |
+
prompt = f"<s>[INST] {question}. Provide only the correct answer. [/INST]"
|
| 18 |
+
|
| 19 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
| 20 |
+
with torch.no_grad():
|
| 21 |
+
outputs = model.generate(
|
| 22 |
+
**inputs,
|
| 23 |
+
max_new_tokens=50,
|
| 24 |
+
temperature=0.0,
|
| 25 |
+
pad_token_id=tokenizer.pad_token_id,
|
| 26 |
+
eos_token_id=tokenizer.eos_token_id
|
| 27 |
+
)
|
| 28 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
|
| 29 |
+
|
| 30 |
+
def evaluate_mmlu(model, tokenizer, num_questions_per_task=5):
|
| 31 |
+
"""
|
| 32 |
+
Evaluates the model on MMLU across all 57 tasks.
|
| 33 |
+
|
| 34 |
+
Returns:
|
| 35 |
+
- Overall accuracy
|
| 36 |
+
- Min accuracy task
|
| 37 |
+
- Max accuracy task
|
| 38 |
+
"""
|
| 39 |
+
results = {}
|
| 40 |
+
|
| 41 |
+
for task_name in mmlu_dataset.keys():
|
| 42 |
+
dataset = mmlu_dataset[task_name]
|
| 43 |
+
sampled_questions = random.sample(list(dataset), min(num_questions_per_task, len(dataset)))
|
| 44 |
+
|
| 45 |
+
predictions = []
|
| 46 |
+
references = []
|
| 47 |
+
|
| 48 |
+
for sample in sampled_questions:
|
| 49 |
+
question = sample["question"]
|
| 50 |
+
correct_answer = sample["answer"] # Assuming dataset provides direct answers
|
| 51 |
+
|
| 52 |
+
model_output = generate_answer(model, tokenizer, question)
|
| 53 |
+
|
| 54 |
+
predictions.append(model_output)
|
| 55 |
+
references.append(correct_answer)
|
| 56 |
+
|
| 57 |
+
# Compute accuracy for the task
|
| 58 |
+
norm_preds = [str(p).lower().strip() for p in predictions]
|
| 59 |
+
norm_refs = [str(r).lower().strip() for r in references]
|
| 60 |
+
task_accuracy = accuracy_metric.compute(predictions=norm_preds, references=norm_refs)["accuracy"]
|
| 61 |
+
|
| 62 |
+
results[task_name] = task_accuracy
|
| 63 |
+
|
| 64 |
+
# Compute overall statistics
|
| 65 |
+
overall_accuracy = sum(results.values()) / len(results)
|
| 66 |
+
min_task = min(results, key=results.get)
|
| 67 |
+
max_task = max(results, key=results.get)
|
| 68 |
+
|
| 69 |
+
return {
|
| 70 |
+
"overall_accuracy": overall_accuracy,
|
| 71 |
+
"min_accuracy_task": (min_task, results[min_task]),
|
| 72 |
+
"max_accuracy_task": (max_task, results[max_task]),
|
| 73 |
+
}
|