File size: 7,352 Bytes
a176955 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import os
import argparse
import numpy as np
import torch
from PIL import Image
from torchvision.transforms import v2
from omegaconf import OmegaConf
from einops import rearrange
from tqdm import tqdm
from huggingface_hub import hf_hub_download
import sys
script_dir = os.path.dirname(os.path.abspath(__file__))
submodule_path = os.path.join(script_dir, "..", "external", "instant-mesh")
sys.path.insert(0, submodule_path)
from src.utils.camera_util import (
get_circular_camera_poses,
get_zero123plus_input_cameras,
FOV_to_intrinsics,
)
from src.utils.train_util import instantiate_from_config
from src.utils.mesh_util import save_obj
from src.utils.infer_util import save_video
def get_render_cameras(
batch_size=1, M=120, radius=4.0, elevation=20.0, is_flexicubes=False
):
c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation)
if is_flexicubes:
cameras = torch.linalg.inv(c2ws)
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1)
else:
extrinsics = c2ws.flatten(-2)
intrinsics = (
FOV_to_intrinsics(30.0).unsqueeze(0).repeat(M, 1, 1).float().flatten(-2)
)
cameras = torch.cat([extrinsics, intrinsics], dim=-1)
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1)
return cameras
def render_frames(
model, planes, render_cameras, render_size=512, chunk_size=1, is_flexicubes=False
):
frames = []
for i in tqdm(range(0, render_cameras.shape[1], chunk_size)):
if is_flexicubes:
frame = model.forward_geometry(
planes, render_cameras[:, i : i + chunk_size], render_size=render_size
)["img"]
else:
frame = model.forward_synthesizer(
planes, render_cameras[:, i : i + chunk_size], render_size=render_size
)["images_rgb"]
frames.append(frame)
frames = torch.cat(frames, dim=1)[0]
return frames
def main(args):
"""
Main function to run the 3D mesh generation process.
"""
# ============================
# CONFIG
# ============================
print("π Starting 3D mesh generation...")
config = OmegaConf.load(args.config)
config_name = os.path.basename(args.config).replace(".yaml", "")
model_config = config.model_config
infer_config = config.infer_config
IS_FLEXICUBES = config_name.startswith("instant-mesh")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# ============================
# SETUP OUTPUT DIRECTORY
# ============================
os.makedirs(args.output_dir, exist_ok=True)
base_name = os.path.splitext(os.path.basename(args.input_file))[0]
mesh_path = os.path.join(args.output_dir, "recon.obj")
video_path = os.path.join(args.output_dir, "recon.mp4")
# ============================
# LOAD RECONSTRUCTION MODEL
# ============================
print("Loading reconstruction model...")
model = instantiate_from_config(model_config)
# Download model checkpoint if it doesn't exist
model_ckpt_path = (
infer_config.model_path
if os.path.exists(infer_config.model_path)
else hf_hub_download(
repo_id="TencentARC/InstantMesh",
filename=f"{config_name.replace('-', '_')}.ckpt",
repo_type="model",
)
)
# Load the state dictionary
state_dict = torch.load(model_ckpt_path, map_location="cpu")["state_dict"]
state_dict = {
k[14:]: v for k, v in state_dict.items() if k.startswith("lrm_generator.")
}
model.load_state_dict(state_dict, strict=True)
model = model.to(device).eval()
if IS_FLEXICUBES:
model.init_flexicubes_geometry(device, fovy=30.0)
# ============================
# PREPARE DATA
# ============================
print(f"Processing input file: {args.input_file}")
# Load and preprocess the input image
input_image = Image.open(args.input_file).convert("RGB")
images = np.asarray(input_image, dtype=np.float32) / 255.0
images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float()
# Rearrange from (C, H, W) to (B, C, H, W) where B is the number of views
images = rearrange(images, "c (n h) (m w) -> (n m) c h w", n=3, m=2)
images = images.unsqueeze(0).to(device)
images = v2.functional.resize(images, size=320, interpolation=3, antialias=True).clamp(0, 1)
input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0 * args.scale).to(device)
# ============================
# RUN INFERENCE AND SAVE OUTPUT
# ============================
with torch.no_grad():
# Generate 3D mesh
planes = model.forward_planes(images, input_cameras)
mesh_out = model.extract_mesh(planes, use_texture_map=False, **infer_config)
# Save the mesh
vertices, faces, vertex_colors = mesh_out
save_obj(vertices, faces, vertex_colors, mesh_path)
print(f"β
Mesh saved to {mesh_path}")
# Render and save video if enabled
if args.save_video:
print("π₯ Rendering video...")
render_size = infer_config.render_resolution
chunk_size = 20 if IS_FLEXICUBES else 1
render_cameras = get_render_cameras(
batch_size=1,
M=120,
radius=args.distance,
elevation=20.0,
is_flexicubes=IS_FLEXICUBES,
).to(device)
frames = render_frames(
model=model,
planes=planes,
render_cameras=render_cameras,
render_size=render_size,
chunk_size=chunk_size,
is_flexicubes=IS_FLEXICUBES,
)
save_video(frames, video_path, fps=30)
print(f"β
Video saved to {video_path}")
print("β¨ Process complete.")
if __name__ == "__main__":
# ============================
# SCRIPT ARGUMENTS
# ============================
parser = argparse.ArgumentParser(
description="Generate a 3D mesh and video from a single multi-view PNG file."
)
# Positional argument for config file
parser.add_argument(
"config",
type=str,
help="Path to the model config file (.yaml)."
)
# Required file paths
parser.add_argument(
"--input_file",
type=str,
required=True,
help="Path to the input PNG file."
)
parser.add_argument(
"--output_dir",
type=str,
default="outputs/",
help="Directory to save the output .obj and .mp4 files. Defaults to 'outputs/'."
)
# Optional parameters for model and rendering
parser.add_argument(
"--scale",
type=float,
default=1.0,
help="Scale of the input cameras."
)
parser.add_argument(
"--distance",
type=float,
default=4.5,
help="Camera distance for rendering the output video."
)
parser.add_argument(
"--no_video",
dest="save_video",
action="store_false",
help="If set, disables saving the output .mp4 video."
)
parsed_args = parser.parse_args()
main(parsed_args)
|