File size: 12,495 Bytes
a176955
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
# This script is borrowed from https://github.com/allenai/objaverse-rendering
import argparse
import math
import os
from pathlib import Path
import shutil
from typing import Dict, Literal, Tuple

import bpy
from mathutils import Vector
from PIL import Image



# --- Blender Setup Functions ---
def global_settings():
    """Configures global Blender rendering settings."""
    context = bpy.context
    scene = context.scene
    render = scene.render

    render.engine = "CYCLES"
    render.image_settings.file_format = "PNG"
    render.image_settings.color_mode = "RGBA"
    render.resolution_x = 512
    render.resolution_y = 512
    render.resolution_percentage = 100

    scene.cycles.device = "GPU"
    scene.cycles.samples = 32
    scene.cycles.diffuse_bounces = 1
    scene.cycles.glossy_bounces = 1
    scene.cycles.transparent_max_bounces = 3
    scene.cycles.transmission_bounces = 3
    scene.cycles.filter_width = 0.01
    scene.cycles.use_denoising = True
    scene.render.film_transparent = True
    return scene


def add_lighting() -> None:
    """Adds area lights to the scene."""
    # Delete the default light
    if "Light" in bpy.data.objects:
        bpy.data.objects["Light"].select_set(True)
        bpy.ops.object.delete()

    # Add a new large area light
    bpy.ops.object.light_add(type="AREA")
    light2 = bpy.data.lights["Area"]
    light2.energy = 30000
    bpy.data.objects["Area"].location[2] = 0.5
    bpy.data.objects["Area"].scale[0] = 100
    bpy.data.objects["Area"].scale[1] = 100
    bpy.data.objects["Area"].scale[2] = 100

    # Add a fill light
    bpy.ops.object.light_add(type="AREA", location=(0, 0, 2))
    fill_obj = bpy.context.active_object
    fill_obj.data.energy = 2000
    fill_obj.scale = (10, 10, 10)


def reset_scene() -> None:
    """Resets the scene to a clean state by deleting all objects and data."""
    # Delete all objects
    bpy.ops.object.select_all(action='SELECT')
    bpy.ops.object.delete()

    # Delete all meshes
    for block in bpy.data.meshes:
        bpy.data.meshes.remove(block, do_unlink=True)

    # Delete all materials
    for material in bpy.data.materials:
        bpy.data.materials.remove(material, do_unlink=True)

    # Delete all textures
    for texture in bpy.data.textures:
        bpy.data.textures.remove(texture, do_unlink=True)

    # Delete all images
    for image in bpy.data.images:
        bpy.data.images.remove(image, do_unlink=True)

    # Delete all lights
    for light in bpy.data.lights:
        bpy.data.lights.remove(light, do_unlink=True)

    # Delete all cameras
    for cam in bpy.data.cameras:
        bpy.data.cameras.remove(cam, do_unlink=True)

    # Delete all empties and curves
    for curve in bpy.data.curves:
        bpy.data.curves.remove(curve, do_unlink=True)

    # Reset world
    if bpy.data.worlds:
        for world in bpy.data.worlds:
            bpy.data.worlds.remove(world, do_unlink=True)

    # Create a new default world
    bpy.context.scene.world = bpy.data.worlds.new("World")
    bpy.context.view_layer.update()


def load_object(object_path: str) -> None:
    """Loads a 3D model into the scene based on its file extension."""
    if object_path.endswith(".glb"):
        bpy.ops.import_scene.gltf(filepath=object_path, merge_vertices=True)
    elif object_path.endswith(".fbx"):
        bpy.ops.import_scene.fbx(filepath=object_path)
    else:
        raise ValueError(f"Unsupported file type: {object_path}")


# --- Scene Normalization and Utility Functions ---
def scene_bbox(single_obj=None, ignore_matrix=False):
    """Calculates the bounding box of the scene or a single object."""
    bbox_min = (math.inf,) * 3
    bbox_max = (-math.inf,) * 3
    found = False
    for obj in scene_meshes() if single_obj is None else [single_obj]:
        found = True
        for coord in obj.bound_box:
            coord = Vector(coord)
            if not ignore_matrix:
                coord = obj.matrix_world @ coord
            bbox_min = tuple(min(x, y) for x, y in zip(bbox_min, coord))
            bbox_max = tuple(max(x, y) for x, y in zip(bbox_max, coord))
    if not found:
        raise RuntimeError("No objects in scene to compute bounding box for")
    return Vector(bbox_min), Vector(bbox_max)


def scene_root_objects():
    """Generator for all root objects in the scene."""
    for obj in bpy.context.scene.objects.values():
        if not obj.parent:
            yield obj


def scene_meshes():
    """Generator for all mesh objects in the scene."""
    for obj in bpy.context.scene.objects.values():
        if isinstance(obj.data, (bpy.types.Mesh)):
            yield obj


def normalize_scene(target_scale=1.0):
    """Normalizes the scene: scales to fit target size and centers at the origin."""
    bbox_min, bbox_max = scene_bbox()
    size = bbox_max - bbox_min
    max_dim = max(size.x, size.y, size.z)
    if max_dim == 0:
        raise ValueError("Model has zero size. Cannot normalize.")

    scale = target_scale / max_dim
    for obj in scene_root_objects():
        obj.scale = obj.scale * scale

    bpy.context.view_layer.update()

    bbox_min, bbox_max = scene_bbox()
    center = (bbox_min + bbox_max) * 0.5
    for obj in scene_root_objects():
        obj.location -= center

    bpy.context.view_layer.update()


# --- Camera and Lighting Setup ---
def setup_camera(scene):
    """Configures the camera and adds a tracking constraint."""
    cam = scene.objects["Camera"]
    cam.location = (0, 1.2, 0)
    cam.data.lens = 35
    cam.data.sensor_width = 32
    cam_constraint = cam.constraints.new(type="TRACK_TO")
    cam_constraint.track_axis = "TRACK_NEGATIVE_Z"
    cam_constraint.up_axis = "UP_Y"
    return cam, cam_constraint


def _create_light(
    name: str,
    light_type: Literal["POINT", "SUN", "SPOT", "AREA"],
    location: Tuple[float, float, float],
    rotation: Tuple[float, float, float],
    energy: float,
    use_shadow: bool = False,
    specular_factor: float = 1.0,
) -> bpy.types.Object:
    """Creates and returns a configured light object."""
    light_data = bpy.data.lights.new(name=name, type=light_type)
    light_object = bpy.data.objects.new(name, light_data)
    bpy.context.collection.objects.link(light_object)

    light_object.location = location
    light_object.rotation_euler = rotation

    light_data.energy = energy
    light_data.use_shadow = use_shadow
    light_data.specular_factor = specular_factor

    return light_object


def create_lighting() -> Dict[str, bpy.types.Object]:
    """Creates a deterministic multi-directional sun lighting setup."""
    # Remove existing lights
    bpy.ops.object.select_all(action="DESELECT")
    bpy.ops.object.select_by_type(type="LIGHT")
    bpy.ops.object.delete()

    # Add 4 deterministic sun lights
    key_light = _create_light(
        name="Key_Light",
        light_type="SUN",
        location=(0, 0, 0),
        rotation=(0.785398, 0, -0.785398),  # 45°, -45° in radians
        energy=0.5,
    )
    fill_light = _create_light(
        name="Fill_Light",
        light_type="SUN",
        location=(0, 0, 0),
        rotation=(0.785398, 0, 2.35619),  # 45°, 135°
        energy=0.3,
    )
    rim_light = _create_light(
        name="Rim_Light",
        light_type="SUN",
        location=(0, 0, 0),
        rotation=(-0.785398, 0, -3.92699),  # -45°, -225°
        energy=0.5,
    )
    bottom_light = _create_light(
        name="Bottom_Light",
        light_type="SUN",
        location=(0, 0, 0),
        rotation=(3.14159, 0, 0),  # 180° (from below)
        energy=0.2,
    )
    return {
        "key_light": key_light,
        "fill_light": fill_light,
        "rim_light": rim_light,
        "bottom_light": bottom_light,
    }


# --- Main Rendering and Image Processing Functions ---
def render_object(
    object_file: str,
    output_dir: str,
    camera_views=[(30, 30, 1.5), (90, -20, 1.5), (150, 30, 1.5), (210, -20, 1.5), (270, 30, 1.5), (330, -20, 1.5)],
    background_color=(255, 255, 255)
) -> None:
    """Renders images of an object from multiple camera views."""
    scene = global_settings()
    os.makedirs(output_dir, exist_ok=True)
    reset_scene()

    # Create and set up a new camera
    bpy.ops.object.camera_add()
    camera = bpy.context.object
    camera.name = "Camera"
    scene.collection.objects.link(camera)
    scene.camera = camera

    scene.view_settings.view_transform = 'Standard'

    # Set background color
    world = bpy.data.worlds["World"]
    world.use_nodes = False
    world.color = tuple(channel / 255 for channel in background_color)
    scene.render.film_transparent = False
    scene.world = world

    # Load, normalize, and light the object
    load_object(object_file)
    normalize_scene()
    create_lighting()
    cam, cam_constraint = setup_camera(scene)

    # Create an empty object for the camera to track
    empty = bpy.data.objects.new("Empty", None)
    scene.collection.objects.link(empty)
    cam_constraint.target = empty

    for i, (azim, elev, camera_dist) in enumerate(camera_views):
        # Set camera position
        theta = math.radians(azim)
        phi = math.radians(elev)
        point = (
            camera_dist * math.cos(phi) * math.cos(theta),
            camera_dist * math.cos(phi) * math.sin(theta),
            camera_dist * math.sin(phi),
        )
        cam.location = point

        # Render the image
        render_path = os.path.join(output_dir, f"{i:02d}.png")
        scene.render.filepath = render_path
        bpy.ops.render.render(write_still=True)


def create_tiled_grid(
    image_paths=["00.png", "01.png", "02.png", "03.png", "04.png", "05.png"],
    output_path="tiled_grid.png",
    tile_width=320,
    tile_height=320,
    background_color=(255, 255, 255),
):
    """Creates a 2x3 tiled grid image from a list of six image paths."""
    if len(image_paths) != 6:
        print("Error: Exactly 6 image paths are required.")
        return

    grid_width = tile_width * 2
    grid_height = tile_height * 3
    grid_image = Image.new("RGB", (grid_width, grid_height), background_color)

    for i, image_path in enumerate(image_paths):
        img = Image.open(image_path)
        img = img.resize((tile_width, tile_height))
        # Handle transparency by pasting onto a solid background
        if img.mode == "RGBA":
            background = Image.new("RGB", (tile_width, tile_height), background_color)
            background.paste(img, (0, 0), img)
            img = background

        x = (i % 2) * tile_width
        y = (i // 2) * tile_height
        grid_image.paste(img, (x, y))

    grid_image.save(output_path)
    print(f"Tiled grid image saved to: {output_path}")



# --- Main Execution Block ---
if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Render a 3D object into a multi-view  and source image format for EditP23.")
    parser.add_argument("--mesh_path", type=str, required=True, help="Path to the input .glb or .fbx file.")
    parser.add_argument("--output_dir", type=str, required=True, help="Directory to save the output src.png and src_mv.png.")
    parser.add_argument("--camera_dist", type=float, default=1.35, help="Camera distance from the object.")
    parser.add_argument("--azim_offset", type=float, default=0, help="Azimuthal offset for camera views in degrees.")
    args = parser.parse_args()

    RENDERS_SUBDIR = "all_renders"
    BACKGROUND_COLOR = (255, 255, 255)
    
    output_dir = Path(args.output_dir)
    renders_path = output_dir / RENDERS_SUBDIR


    ELEV_1 = 20
    ELEV_2 = -10
    elevs = [ELEV_1, ELEV_2] * 3
    azims = [(30 + 60 * i + args.azim_offset) % 360 for i in range(6)]
    camera_views = [(azim, elev, args.camera_dist) for azim, elev in zip(azims, elevs)] + [
        ((0 + args.azim_offset) % 360, ELEV_1, args.camera_dist)
    ]
    
    
    # Render the object from different views
    render_object(
        args.mesh_path,
        output_dir=str(renders_path),
        camera_views=camera_views,
        background_color=BACKGROUND_COLOR,
    )
    
    # --- Create Final Outputs ---
    image_paths_for_grid = [renders_path / f"{i:02d}.png" for i in range(6)]
    
    create_tiled_grid(
        image_paths=image_paths_for_grid,
        output_path=str(output_dir/"src_mv.png"),
        background_color=BACKGROUND_COLOR,
    )

    shutil.copy(renders_path / "06.png", output_dir / "src.png")

    print(f"Saved conditioning view and multi-view grid to {renders_path}.")