Spaces:
Build error
Build error
| """ | |
| Modified HuBERT model without kmeans. | |
| Original author: https://github.com/lucidrains/ | |
| Modified by: https://www.github.com/gitmylo/ | |
| License: MIT | |
| """ | |
| # Modified code from https://github.com/lucidrains/audiolm-pytorch/blob/main/audiolm_pytorch/hubert_kmeans.py | |
| import logging | |
| from pathlib import Path | |
| import torch | |
| from einops import pack, unpack | |
| from torch import nn | |
| from torchaudio.functional import resample | |
| from transformers import HubertModel | |
| def round_down_nearest_multiple(num, divisor): | |
| return num // divisor * divisor | |
| def curtail_to_multiple(t, mult, from_left=False): | |
| data_len = t.shape[-1] | |
| rounded_seq_len = round_down_nearest_multiple(data_len, mult) | |
| seq_slice = slice(None, rounded_seq_len) if not from_left else slice(-rounded_seq_len, None) | |
| return t[..., seq_slice] | |
| def exists(val): | |
| return val is not None | |
| def default(val, d): | |
| return val if exists(val) else d | |
| class CustomHubert(nn.Module): | |
| """ | |
| checkpoint and kmeans can be downloaded at https://github.com/facebookresearch/fairseq/tree/main/examples/hubert | |
| or you can train your own | |
| """ | |
| def __init__(self, checkpoint_path, target_sample_hz=16000, seq_len_multiple_of=None, output_layer=9, device=None): | |
| super().__init__() | |
| self.target_sample_hz = target_sample_hz | |
| self.seq_len_multiple_of = seq_len_multiple_of | |
| self.output_layer = output_layer | |
| if device is not None: | |
| self.to(device) | |
| self.model = HubertModel.from_pretrained("facebook/hubert-base-ls960") | |
| if device is not None: | |
| self.model.to(device) | |
| self.model.eval() | |
| def groups(self): | |
| return 1 | |
| def forward(self, wav_input, flatten=True, input_sample_hz=None): | |
| device = wav_input.device | |
| if exists(input_sample_hz): | |
| wav_input = resample(wav_input, input_sample_hz, self.target_sample_hz) | |
| if exists(self.seq_len_multiple_of): | |
| wav_input = curtail_to_multiple(wav_input, self.seq_len_multiple_of) | |
| outputs = self.model.forward( | |
| wav_input, | |
| output_hidden_states=True, | |
| ) | |
| embed = outputs["hidden_states"][self.output_layer] | |
| embed, packed_shape = pack([embed], "* d") | |
| codebook_indices = torch.from_numpy(embed.cpu().detach().numpy()).to(device) | |
| if flatten: | |
| return codebook_indices | |
| (codebook_indices,) = unpack(codebook_indices, packed_shape, "*") | |
| return codebook_indices | |