Spaces:
Build error
Build error
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from vocoder.distribution import sample_from_discretized_mix_logistic | |
| from vocoder.display import * | |
| from vocoder.audio import * | |
| class ResBlock(nn.Module): | |
| def __init__(self, dims): | |
| super().__init__() | |
| self.conv1 = nn.Conv1d(dims, dims, kernel_size=1, bias=False) | |
| self.conv2 = nn.Conv1d(dims, dims, kernel_size=1, bias=False) | |
| self.batch_norm1 = nn.BatchNorm1d(dims) | |
| self.batch_norm2 = nn.BatchNorm1d(dims) | |
| def forward(self, x): | |
| residual = x | |
| x = self.conv1(x) | |
| x = self.batch_norm1(x) | |
| x = F.relu(x) | |
| x = self.conv2(x) | |
| x = self.batch_norm2(x) | |
| return x + residual | |
| class MelResNet(nn.Module): | |
| def __init__(self, res_blocks, in_dims, compute_dims, res_out_dims, pad): | |
| super().__init__() | |
| k_size = pad * 2 + 1 | |
| self.conv_in = nn.Conv1d(in_dims, compute_dims, kernel_size=k_size, bias=False) | |
| self.batch_norm = nn.BatchNorm1d(compute_dims) | |
| self.layers = nn.ModuleList() | |
| for i in range(res_blocks): | |
| self.layers.append(ResBlock(compute_dims)) | |
| self.conv_out = nn.Conv1d(compute_dims, res_out_dims, kernel_size=1) | |
| def forward(self, x): | |
| x = self.conv_in(x) | |
| x = self.batch_norm(x) | |
| x = F.relu(x) | |
| for f in self.layers: x = f(x) | |
| x = self.conv_out(x) | |
| return x | |
| class Stretch2d(nn.Module): | |
| def __init__(self, x_scale, y_scale): | |
| super().__init__() | |
| self.x_scale = x_scale | |
| self.y_scale = y_scale | |
| def forward(self, x): | |
| b, c, h, w = x.size() | |
| x = x.unsqueeze(-1).unsqueeze(3) | |
| x = x.repeat(1, 1, 1, self.y_scale, 1, self.x_scale) | |
| return x.view(b, c, h * self.y_scale, w * self.x_scale) | |
| class UpsampleNetwork(nn.Module): | |
| def __init__(self, feat_dims, upsample_scales, compute_dims, | |
| res_blocks, res_out_dims, pad): | |
| super().__init__() | |
| total_scale = np.cumproduct(upsample_scales)[-1] | |
| self.indent = pad * total_scale | |
| self.resnet = MelResNet(res_blocks, feat_dims, compute_dims, res_out_dims, pad) | |
| self.resnet_stretch = Stretch2d(total_scale, 1) | |
| self.up_layers = nn.ModuleList() | |
| for scale in upsample_scales: | |
| k_size = (1, scale * 2 + 1) | |
| padding = (0, scale) | |
| stretch = Stretch2d(scale, 1) | |
| conv = nn.Conv2d(1, 1, kernel_size=k_size, padding=padding, bias=False) | |
| conv.weight.data.fill_(1. / k_size[1]) | |
| self.up_layers.append(stretch) | |
| self.up_layers.append(conv) | |
| def forward(self, m): | |
| aux = self.resnet(m).unsqueeze(1) | |
| aux = self.resnet_stretch(aux) | |
| aux = aux.squeeze(1) | |
| m = m.unsqueeze(1) | |
| for f in self.up_layers: m = f(m) | |
| m = m.squeeze(1)[:, :, self.indent:-self.indent] | |
| return m.transpose(1, 2), aux.transpose(1, 2) | |
| class WaveRNN(nn.Module): | |
| def __init__(self, rnn_dims, fc_dims, bits, pad, upsample_factors, | |
| feat_dims, compute_dims, res_out_dims, res_blocks, | |
| hop_length, sample_rate, mode='RAW'): | |
| super().__init__() | |
| self.mode = mode | |
| self.pad = pad | |
| if self.mode == 'RAW' : | |
| self.n_classes = 2 ** bits | |
| elif self.mode == 'MOL' : | |
| self.n_classes = 30 | |
| else : | |
| RuntimeError("Unknown model mode value - ", self.mode) | |
| self.rnn_dims = rnn_dims | |
| self.aux_dims = res_out_dims // 4 | |
| self.hop_length = hop_length | |
| self.sample_rate = sample_rate | |
| self.upsample = UpsampleNetwork(feat_dims, upsample_factors, compute_dims, res_blocks, res_out_dims, pad) | |
| self.I = nn.Linear(feat_dims + self.aux_dims + 1, rnn_dims) | |
| self.rnn1 = nn.GRU(rnn_dims, rnn_dims, batch_first=True) | |
| self.rnn2 = nn.GRU(rnn_dims + self.aux_dims, rnn_dims, batch_first=True) | |
| self.fc1 = nn.Linear(rnn_dims + self.aux_dims, fc_dims) | |
| self.fc2 = nn.Linear(fc_dims + self.aux_dims, fc_dims) | |
| self.fc3 = nn.Linear(fc_dims, self.n_classes) | |
| self.step = nn.Parameter(torch.zeros(1).long(), requires_grad=False) | |
| self.num_params() | |
| def forward(self, x, mels): | |
| self.step += 1 | |
| bsize = x.size(0) | |
| h1 = torch.zeros(1, bsize, self.rnn_dims).cuda() | |
| h2 = torch.zeros(1, bsize, self.rnn_dims).cuda() | |
| mels, aux = self.upsample(mels) | |
| aux_idx = [self.aux_dims * i for i in range(5)] | |
| a1 = aux[:, :, aux_idx[0]:aux_idx[1]] | |
| a2 = aux[:, :, aux_idx[1]:aux_idx[2]] | |
| a3 = aux[:, :, aux_idx[2]:aux_idx[3]] | |
| a4 = aux[:, :, aux_idx[3]:aux_idx[4]] | |
| x = torch.cat([x.unsqueeze(-1), mels, a1], dim=2) | |
| x = self.I(x) | |
| res = x | |
| x, _ = self.rnn1(x, h1) | |
| x = x + res | |
| res = x | |
| x = torch.cat([x, a2], dim=2) | |
| x, _ = self.rnn2(x, h2) | |
| x = x + res | |
| x = torch.cat([x, a3], dim=2) | |
| x = F.relu(self.fc1(x)) | |
| x = torch.cat([x, a4], dim=2) | |
| x = F.relu(self.fc2(x)) | |
| return self.fc3(x) | |
| def generate(self, mels, batched, target, overlap, mu_law, progress_callback=None): | |
| mu_law = mu_law if self.mode == 'RAW' else False | |
| progress_callback = progress_callback or self.gen_display | |
| self.eval() | |
| output = [] | |
| start = time.time() | |
| rnn1 = self.get_gru_cell(self.rnn1) | |
| rnn2 = self.get_gru_cell(self.rnn2) | |
| with torch.no_grad(): | |
| mels = mels.cuda() | |
| wave_len = (mels.size(-1) - 1) * self.hop_length | |
| mels = self.pad_tensor(mels.transpose(1, 2), pad=self.pad, side='both') | |
| mels, aux = self.upsample(mels.transpose(1, 2)) | |
| if batched: | |
| mels = self.fold_with_overlap(mels, target, overlap) | |
| aux = self.fold_with_overlap(aux, target, overlap) | |
| b_size, seq_len, _ = mels.size() | |
| h1 = torch.zeros(b_size, self.rnn_dims).cuda() | |
| h2 = torch.zeros(b_size, self.rnn_dims).cuda() | |
| x = torch.zeros(b_size, 1).cuda() | |
| d = self.aux_dims | |
| aux_split = [aux[:, :, d * i:d * (i + 1)] for i in range(4)] | |
| for i in range(seq_len): | |
| m_t = mels[:, i, :] | |
| a1_t, a2_t, a3_t, a4_t = (a[:, i, :] for a in aux_split) | |
| x = torch.cat([x, m_t, a1_t], dim=1) | |
| x = self.I(x) | |
| h1 = rnn1(x, h1) | |
| x = x + h1 | |
| inp = torch.cat([x, a2_t], dim=1) | |
| h2 = rnn2(inp, h2) | |
| x = x + h2 | |
| x = torch.cat([x, a3_t], dim=1) | |
| x = F.relu(self.fc1(x)) | |
| x = torch.cat([x, a4_t], dim=1) | |
| x = F.relu(self.fc2(x)) | |
| logits = self.fc3(x) | |
| if self.mode == 'MOL': | |
| sample = sample_from_discretized_mix_logistic(logits.unsqueeze(0).transpose(1, 2)) | |
| output.append(sample.view(-1)) | |
| # x = torch.FloatTensor([[sample]]).cuda() | |
| x = sample.transpose(0, 1).cuda() | |
| elif self.mode == 'RAW' : | |
| posterior = F.softmax(logits, dim=1) | |
| distrib = torch.distributions.Categorical(posterior) | |
| sample = 2 * distrib.sample().float() / (self.n_classes - 1.) - 1. | |
| output.append(sample) | |
| x = sample.unsqueeze(-1) | |
| else: | |
| raise RuntimeError("Unknown model mode value - ", self.mode) | |
| if i % 100 == 0: | |
| gen_rate = (i + 1) / (time.time() - start) * b_size / 1000 | |
| progress_callback(i, seq_len, b_size, gen_rate) | |
| output = torch.stack(output).transpose(0, 1) | |
| output = output.cpu().numpy() | |
| output = output.astype(np.float64) | |
| if batched: | |
| output = self.xfade_and_unfold(output, target, overlap) | |
| else: | |
| output = output[0] | |
| if mu_law: | |
| output = decode_mu_law(output, self.n_classes, False) | |
| if hp.apply_preemphasis: | |
| output = de_emphasis(output) | |
| # Fade-out at the end to avoid signal cutting out suddenly | |
| fade_out = np.linspace(1, 0, 20 * self.hop_length) | |
| output = output[:wave_len] | |
| output[-20 * self.hop_length:] *= fade_out | |
| self.train() | |
| return output | |
| def gen_display(self, i, seq_len, b_size, gen_rate): | |
| pbar = progbar(i, seq_len) | |
| msg = f'| {pbar} {i*b_size}/{seq_len*b_size} | Batch Size: {b_size} | Gen Rate: {gen_rate:.1f}kHz | ' | |
| stream(msg) | |
| def get_gru_cell(self, gru): | |
| gru_cell = nn.GRUCell(gru.input_size, gru.hidden_size) | |
| gru_cell.weight_hh.data = gru.weight_hh_l0.data | |
| gru_cell.weight_ih.data = gru.weight_ih_l0.data | |
| gru_cell.bias_hh.data = gru.bias_hh_l0.data | |
| gru_cell.bias_ih.data = gru.bias_ih_l0.data | |
| return gru_cell | |
| def pad_tensor(self, x, pad, side='both'): | |
| # NB - this is just a quick method i need right now | |
| # i.e., it won't generalise to other shapes/dims | |
| b, t, c = x.size() | |
| total = t + 2 * pad if side == 'both' else t + pad | |
| padded = torch.zeros(b, total, c).cuda() | |
| if side == 'before' or side == 'both': | |
| padded[:, pad:pad + t, :] = x | |
| elif side == 'after': | |
| padded[:, :t, :] = x | |
| return padded | |
| def fold_with_overlap(self, x, target, overlap): | |
| ''' Fold the tensor with overlap for quick batched inference. | |
| Overlap will be used for crossfading in xfade_and_unfold() | |
| Args: | |
| x (tensor) : Upsampled conditioning features. | |
| shape=(1, timesteps, features) | |
| target (int) : Target timesteps for each index of batch | |
| overlap (int) : Timesteps for both xfade and rnn warmup | |
| Return: | |
| (tensor) : shape=(num_folds, target + 2 * overlap, features) | |
| Details: | |
| x = [[h1, h2, ... hn]] | |
| Where each h is a vector of conditioning features | |
| Eg: target=2, overlap=1 with x.size(1)=10 | |
| folded = [[h1, h2, h3, h4], | |
| [h4, h5, h6, h7], | |
| [h7, h8, h9, h10]] | |
| ''' | |
| _, total_len, features = x.size() | |
| # Calculate variables needed | |
| num_folds = (total_len - overlap) // (target + overlap) | |
| extended_len = num_folds * (overlap + target) + overlap | |
| remaining = total_len - extended_len | |
| # Pad if some time steps poking out | |
| if remaining != 0: | |
| num_folds += 1 | |
| padding = target + 2 * overlap - remaining | |
| x = self.pad_tensor(x, padding, side='after') | |
| folded = torch.zeros(num_folds, target + 2 * overlap, features).cuda() | |
| # Get the values for the folded tensor | |
| for i in range(num_folds): | |
| start = i * (target + overlap) | |
| end = start + target + 2 * overlap | |
| folded[i] = x[:, start:end, :] | |
| return folded | |
| def xfade_and_unfold(self, y, target, overlap): | |
| ''' Applies a crossfade and unfolds into a 1d array. | |
| Args: | |
| y (ndarry) : Batched sequences of audio samples | |
| shape=(num_folds, target + 2 * overlap) | |
| dtype=np.float64 | |
| overlap (int) : Timesteps for both xfade and rnn warmup | |
| Return: | |
| (ndarry) : audio samples in a 1d array | |
| shape=(total_len) | |
| dtype=np.float64 | |
| Details: | |
| y = [[seq1], | |
| [seq2], | |
| [seq3]] | |
| Apply a gain envelope at both ends of the sequences | |
| y = [[seq1_in, seq1_target, seq1_out], | |
| [seq2_in, seq2_target, seq2_out], | |
| [seq3_in, seq3_target, seq3_out]] | |
| Stagger and add up the groups of samples: | |
| [seq1_in, seq1_target, (seq1_out + seq2_in), seq2_target, ...] | |
| ''' | |
| num_folds, length = y.shape | |
| target = length - 2 * overlap | |
| total_len = num_folds * (target + overlap) + overlap | |
| # Need some silence for the rnn warmup | |
| silence_len = overlap // 2 | |
| fade_len = overlap - silence_len | |
| silence = np.zeros((silence_len), dtype=np.float64) | |
| # Equal power crossfade | |
| t = np.linspace(-1, 1, fade_len, dtype=np.float64) | |
| fade_in = np.sqrt(0.5 * (1 + t)) | |
| fade_out = np.sqrt(0.5 * (1 - t)) | |
| # Concat the silence to the fades | |
| fade_in = np.concatenate([silence, fade_in]) | |
| fade_out = np.concatenate([fade_out, silence]) | |
| # Apply the gain to the overlap samples | |
| y[:, :overlap] *= fade_in | |
| y[:, -overlap:] *= fade_out | |
| unfolded = np.zeros((total_len), dtype=np.float64) | |
| # Loop to add up all the samples | |
| for i in range(num_folds): | |
| start = i * (target + overlap) | |
| end = start + target + 2 * overlap | |
| unfolded[start:end] += y[i] | |
| return unfolded | |
| def get_step(self) : | |
| return self.step.data.item() | |
| def checkpoint(self, model_dir, optimizer) : | |
| k_steps = self.get_step() // 1000 | |
| self.save(model_dir.joinpath("checkpoint_%dk_steps.pt" % k_steps), optimizer) | |
| def log(self, path, msg) : | |
| with open(path, 'a') as f: | |
| print(msg, file=f) | |
| def load(self, path, optimizer) : | |
| checkpoint = torch.load(path) | |
| if "optimizer_state" in checkpoint: | |
| self.load_state_dict(checkpoint["model_state"]) | |
| optimizer.load_state_dict(checkpoint["optimizer_state"]) | |
| else: | |
| # Backwards compatibility | |
| self.load_state_dict(checkpoint) | |
| def save(self, path, optimizer) : | |
| torch.save({ | |
| "model_state": self.state_dict(), | |
| "optimizer_state": optimizer.state_dict(), | |
| }, path) | |
| def num_params(self, print_out=True): | |
| parameters = filter(lambda p: p.requires_grad, self.parameters()) | |
| parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000 | |
| if print_out : | |
| print('Trainable Parameters: %.3fM' % parameters) | |