File size: 21,068 Bytes
b14067d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
import sys
import os
sys.path.insert(0, os.getcwd())
sys.path.append('.')
sys.path.append('..')
import argparse
import os

import torch
from transformers import T5EncoderModel, T5Tokenizer
from diffusers import (
    CogVideoXDDIMScheduler,
    CogVideoXDPMScheduler,
    AutoencoderKLCogVideoX
)
from diffusers.utils import export_to_video, load_video

from controlnet_pipeline import ControlnetCogVideoXImageToVideoPCDPipeline
from cogvideo_transformer import CustomCogVideoXTransformer3DModel
from cogvideo_controlnet_pcd import CogVideoXControlnetPCD
from training.controlnet_datasets_camera_pcd_mask import RealEstate10KPCDRenderDataset
from torchvision.transforms.functional import to_pil_image

from inference.utils import stack_images_horizontally
from PIL import Image
import numpy as np
import torchvision.transforms as transforms
import cv2

import cv2
import numpy as np
import torch
import torch.nn.functional as F

import cv2
import numpy as np
import torch

def get_black_region_mask_tensor(video_tensor, threshold=2, kernel_size=15):
    """
    Generate cleaned binary masks for black regions in a video tensor.
    
    Args:
        video_tensor (torch.Tensor): shape (T, H, W, 3), RGB, uint8
        threshold (int): pixel intensity threshold to consider a pixel as black (default: 20)
        kernel_size (int): morphological kernel size to smooth masks (default: 7)
    
    Returns:
        torch.Tensor: binary mask tensor of shape (T, H, W), where 1 indicates black region
    """
    video_uint8 = ((video_tensor + 1.0) * 127.5).clamp(0, 255).to(torch.uint8).permute(0, 2, 3, 1)  # shape (T, H, W, C)
    video_np = video_uint8.numpy()

    T, H, W, _ = video_np.shape
    masks = np.empty((T, H, W), dtype=np.uint8)
    kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernel_size, kernel_size))

    for t in range(T):
        img = video_np[t]  # (H, W, 3), uint8
        gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
        _, mask = cv2.threshold(gray, threshold, 255, cv2.THRESH_BINARY_INV)
        mask_cleaned = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)
        masks[t] = (mask_cleaned > 0).astype(np.uint8)
    return torch.from_numpy(masks)

def maxpool_mask_tensor(mask_tensor):
    """
    Apply spatial and temporal max pooling to a binary mask tensor.
    
    Args:
        mask_tensor (torch.Tensor): shape (T, H, W), binary mask (0 or 1)
    
    Returns:
        torch.Tensor: shape (12, 30, 45), pooled binary mask
    """
    T, H, W = mask_tensor.shape
    assert T % 12 == 0, "T must be divisible by 12 (e.g., 48)"
    assert H % 30 == 0 and W % 45 == 0, "H and W must be divisible by 30 and 45"

    # Reshape to (B=T, C=1, H, W) for 2D spatial pooling
    x = mask_tensor.unsqueeze(1).float()  # (T, 1, H, W)
    x_pooled = F.max_pool2d(x, kernel_size=(H // 30, W // 45))  # → (T, 1, 30, 45)

    # Temporal pooling: reshape to (12, T//12, 30, 45) and max along dim=1
    t_groups = T // 12
    x_pooled = x_pooled.view(12, t_groups, 30, 45)
    pooled_mask = torch.amax(x_pooled, dim=1)  # → (12, 30, 45)

    # Add a zero frame at the beginning: shape (1, 30, 45)
    zero_frame = torch.zeros_like(pooled_mask[0:1])  # (1, 30, 45)
    pooled_mask = torch.cat([zero_frame, pooled_mask], dim=0)  # → (13, 30, 45)
    
    return 1 - pooled_mask.int()

def avgpool_mask_tensor(mask_tensor):
    """
    Apply spatial and temporal average pooling to a binary mask tensor,
    and threshold at 0.5 to retain only majority-active regions.
    
    Args:
        mask_tensor (torch.Tensor): shape (T, H, W), binary mask (0 or 1)
    
    Returns:
        torch.Tensor: shape (13, 30, 45), pooled binary mask with first frame zeroed
    """
    T, H, W = mask_tensor.shape
    assert T % 12 == 0, "T must be divisible by 12 (e.g., 48)"
    assert H % 30 == 0 and W % 45 == 0, "H and W must be divisible by 30 and 45"

    # Spatial average pooling
    x = mask_tensor.unsqueeze(1).float()  # (T, 1, H, W)
    x_pooled = F.avg_pool2d(x, kernel_size=(H // 30, W // 45))  # → (T, 1, 30, 45)

    # Temporal pooling
    t_groups = T // 12
    x_pooled = x_pooled.view(12, t_groups, 30, 45)
    pooled_avg = torch.mean(x_pooled, dim=1)  # → (12, 30, 45)

    # Threshold: keep only when > 0.5
    pooled_mask = (pooled_avg > 0.5).int()

    # Add zero frame
    zero_frame = torch.zeros_like(pooled_mask[0:1])
    pooled_mask = torch.cat([zero_frame, pooled_mask], dim=0)  # → (13, 30, 45)

    return 1 - pooled_mask  # inverting as before

@torch.no_grad()
def generate_video(
    prompt,
    image,
    video_root_dir: str,
    base_model_path: str,
    use_zero_conv: bool,
    controlnet_model_path: str,
    controlnet_weights: float = 1.0,
    controlnet_guidance_start: float = 0.0,
    controlnet_guidance_end: float = 1.0,
    use_dynamic_cfg: bool = True,
    lora_path: str = None,
    lora_rank: int = 128,
    output_path: str = "./output/",
    num_inference_steps: int = 50,
    guidance_scale: float = 6.0,
    num_videos_per_prompt: int = 1,
    dtype: torch.dtype = torch.bfloat16,
    seed: int = 42,
    num_frames: int = 49,
    height: int = 480,
    width: int = 720,
    start_camera_idx: int = 0,
    end_camera_idx: int = 1,
    controlnet_transformer_num_attn_heads: int = None,
    controlnet_transformer_attention_head_dim: int = None,
    controlnet_transformer_out_proj_dim_factor: int = None,
    controlnet_transformer_out_proj_dim_zero_init: bool = False,
    controlnet_transformer_num_layers: int = 8,
    downscale_coef: int = 8,
    controlnet_input_channels: int = 6,
    infer_with_mask: bool = False,
    pool_style: str = 'avg',
    pipe_cpu_offload: bool = False,
):
    """
    Generates a video based on the given prompt and saves it to the specified path.

    Parameters:
    - prompt (str): The description of the video to be generated.
    - video_root_dir (str): The path to the camera dataset
    - annotation_json (str): Name of subset (train.json or test.json)
    - base_model_path (str): The path of the pre-trained model to be used.
    - controlnet_model_path (str): The path of the pre-trained conrolnet model to be used.
    - controlnet_weights (float): Strenght of controlnet
    - controlnet_guidance_start (float): The stage when the controlnet starts to be applied
    - controlnet_guidance_end (float): The stage when the controlnet end to be applied
    - lora_path (str): The path of the LoRA weights to be used.
    - lora_rank (int): The rank of the LoRA weights.
    - output_path (str): The path where the generated video will be saved.
    - num_inference_steps (int): Number of steps for the inference process. More steps can result in better quality.
    - guidance_scale (float): The scale for classifier-free guidance. Higher values can lead to better alignment with the prompt.
    - num_videos_per_prompt (int): Number of videos to generate per prompt.
    - dtype (torch.dtype): The data type for computation (default is torch.bfloat16).
    - seed (int): The seed for reproducibility.
    """
    os.makedirs(output_path, exist_ok=True)
    # 1.  Load the pre-trained CogVideoX pipeline with the specified precision (bfloat16).
    tokenizer = T5Tokenizer.from_pretrained(
        base_model_path, subfolder="tokenizer"
    )
    text_encoder = T5EncoderModel.from_pretrained(
        base_model_path, subfolder="text_encoder"
    )
    transformer = CustomCogVideoXTransformer3DModel.from_pretrained(
        base_model_path, subfolder="transformer"
    )
    vae = AutoencoderKLCogVideoX.from_pretrained(
        base_model_path, subfolder="vae"
    )
    scheduler = CogVideoXDDIMScheduler.from_pretrained(
        base_model_path, subfolder="scheduler"
    )
    # ControlNet
    num_attention_heads_orig = 48 if "5b" in base_model_path.lower() else 30
    controlnet_kwargs = {}
    if controlnet_transformer_num_attn_heads is not None:
        controlnet_kwargs["num_attention_heads"] = args.controlnet_transformer_num_attn_heads
    else:
        controlnet_kwargs["num_attention_heads"] = num_attention_heads_orig
    if controlnet_transformer_attention_head_dim is not None:
        controlnet_kwargs["attention_head_dim"] = controlnet_transformer_attention_head_dim
    if controlnet_transformer_out_proj_dim_factor is not None:
        controlnet_kwargs["out_proj_dim"] = num_attention_heads_orig * controlnet_transformer_out_proj_dim_factor
    controlnet_kwargs["out_proj_dim_zero_init"] = controlnet_transformer_out_proj_dim_zero_init
    controlnet = CogVideoXControlnetPCD(
        num_layers=controlnet_transformer_num_layers,
        downscale_coef=downscale_coef,
        in_channels=controlnet_input_channels,
        use_zero_conv=use_zero_conv,
        **controlnet_kwargs,   
    )
    if controlnet_model_path:
        ckpt = torch.load(controlnet_model_path, map_location='cpu', weights_only=False)
        controlnet_state_dict = {}
        for name, params in ckpt['state_dict'].items():
            controlnet_state_dict[name] = params
        m, u = controlnet.load_state_dict(controlnet_state_dict, strict=False)
        print(f'[ Weights from pretrained controlnet was loaded into controlnet ] [M: {len(m)} | U: {len(u)}]')
    
    # Full pipeline
    pipe = ControlnetCogVideoXImageToVideoPCDPipeline(
        tokenizer=tokenizer,
        text_encoder=text_encoder,
        transformer=transformer,
        vae=vae,
        controlnet=controlnet,
        scheduler=scheduler,
    ).to('cuda')
    # If you're using with lora, add this code
    if lora_path:
        pipe.load_lora_weights(lora_path, weight_name="pytorch_lora_weights.safetensors", adapter_name="test_1")
        pipe.fuse_lora(lora_scale=1 / lora_rank)

    # 2. Set Scheduler.
    # Can be changed to `CogVideoXDPMScheduler` or `CogVideoXDDIMScheduler`.
    # We recommend using `CogVideoXDDIMScheduler` for CogVideoX-2B.
    # using `CogVideoXDPMScheduler` for CogVideoX-5B / CogVideoX-5B-I2V.

    # pipe.scheduler = CogVideoXDDIMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
    pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")

    # 3. Enable CPU offload for the model.
    # turn off if you have multiple GPUs or enough GPU memory(such as H100) and it will cost less time in inference
    # and enable to("cuda")

    # pipe.to("cuda")
    pipe = pipe.to(dtype=dtype)
    # pipe.enable_sequential_cpu_offload()
    if pipe_cpu_offload:
        pipe.enable_model_cpu_offload()

    pipe.vae.enable_slicing()
    pipe.vae.enable_tiling()
    
    # 4. Load dataset
    eval_dataset = RealEstate10KPCDRenderDataset(
        video_root_dir=video_root_dir,
        image_size=(height, width), 
        sample_n_frames=num_frames,
    )
    
    None_prompt = True
    if prompt:
        None_prompt = False
    print(eval_dataset.dataset)
    
    for camera_idx in range(start_camera_idx, end_camera_idx):
        # Get data
        data_dict = eval_dataset[camera_idx]
        reference_video = data_dict['video']
        anchor_video = data_dict['anchor_video']
        print(eval_dataset.dataset[camera_idx],seed)
        
        if None_prompt:
            # Set output directory
            output_path_file = os.path.join(output_path, f"{camera_idx:05d}_{seed}_out.mp4")
            prompt = data_dict['caption']
        else:
            # Set output directory
            output_path_file = os.path.join(output_path, f"{prompt[:10]}_{camera_idx:05d}_{seed}_out.mp4")

        if image is None:
            input_images = reference_video[0].unsqueeze(0)
        else:
            input_images = torch.tensor(np.array(Image.open(image))).permute(2,0,1).unsqueeze(0)/255
            pixel_transforms = [transforms.Resize((480, 720)),
                                transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)]
            for transform in pixel_transforms:
                input_images = transform(input_images)

        # if image is None:
        #     input_images = reference_video[:24]
        # else:
        #     input_images = torch.tensor(np.array(Image.open(image))).permute(2,0,1)/255
        #     pixel_transforms = [transforms.Resize((480, 720)),
        #                         transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)]
        #     for transform in pixel_transforms:
        #         input_images = transform(input_images)
            
        reference_frames = [to_pil_image(frame) for frame in ((reference_video)/2+0.5)]
        
        output_path_file_reference = output_path_file.replace("_out.mp4", "_reference.mp4")
        output_path_file_out_reference = output_path_file.replace(".mp4", "_reference.mp4")
        
        if infer_with_mask:
            try:
                video_mask = 1 - torch.from_numpy(np.load(os.path.join(eval_dataset.root_path,'masks',eval_dataset.dataset[camera_idx]+'.npz'))['mask']*1)
            except:
                print('using derived mask')
                video_mask = get_black_region_mask_tensor(anchor_video)
            
            if pool_style == 'max':
                controlnet_output_mask = maxpool_mask_tensor(video_mask[1:]).flatten().unsqueeze(0).unsqueeze(-1).to('cuda')
            elif pool_style == 'avg':
               controlnet_output_mask = avgpool_mask_tensor(video_mask[1:]).flatten().unsqueeze(0).unsqueeze(-1).to('cuda')
        else:
            controlnet_output_mask = None
        # if os.path.isfile(output_path_file):
        #     continue
        
        # 5. Generate the video frames based on the prompt.
        # `num_frames` is the Number of frames to generate.
        # This is the default value for 6 seconds video and 8 fps and will plus 1 frame for the first frame and 49 frames.
        video_generate_all = pipe(
            image=input_images,
            anchor_video=anchor_video,
            controlnet_output_mask=controlnet_output_mask,
            prompt=prompt,
            num_videos_per_prompt=num_videos_per_prompt,  # Number of videos to generate per prompt
            num_inference_steps=num_inference_steps,  # Number of inference steps
            num_frames=num_frames,  # Number of frames to generate,changed to 49 for diffusers version `0.30.3` and after.
            use_dynamic_cfg=use_dynamic_cfg,  # This id used for DPM Sechduler, for DDIM scheduler, it should be False
            guidance_scale=guidance_scale,
            generator=torch.Generator().manual_seed(seed),  # Set the seed for reproducibility
            controlnet_weights=controlnet_weights,
            controlnet_guidance_start=controlnet_guidance_start,
            controlnet_guidance_end=controlnet_guidance_end,
        ).frames
        video_generate = video_generate_all[0]

        # 6. Export the generated frames to a video file. fps must be 8 for original video.
        export_to_video(video_generate, output_path_file, fps=8)
        export_to_video(reference_frames, output_path_file_reference, fps=8)
        out_reference_frames = [
            stack_images_horizontally(frame_reference, frame_out)
            for frame_out, frame_reference in zip(video_generate, reference_frames)
            ]
        
        anchor_video = [to_pil_image(frame) for frame in ((anchor_video)/2+0.5)]
        out_reference_frames = [
            stack_images_horizontally(frame_out, frame_reference)
            for frame_out, frame_reference in zip(out_reference_frames, anchor_video)
            ]
        export_to_video(out_reference_frames, output_path_file_out_reference, fps=8)


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Generate a video from a text prompt using CogVideoX")
    parser.add_argument("--prompt", type=str, default=None, help="The description of the video to be generated")
    parser.add_argument("--image", type=str, default=None, help="The reference image of the video to be generated")
    parser.add_argument(
        "--video_root_dir",
        type=str,
        required=True,
        help="The path of the video for controlnet processing.",
    )
    parser.add_argument(
        "--base_model_path", type=str, default="THUDM/CogVideoX-5b", help="The path of the pre-trained model to be used"
    )
    parser.add_argument(
        "--controlnet_model_path", type=str, default="TheDenk/cogvideox-5b-controlnet-hed-v1", help="The path of the controlnet pre-trained model to be used"
    )
    parser.add_argument("--controlnet_weights", type=float, default=0.5, help="Strenght of controlnet")
    parser.add_argument("--use_zero_conv", action="store_true", default=False, help="Use zero conv")
    parser.add_argument("--infer_with_mask", action="store_true", default=False, help="add mask to controlnet")
    parser.add_argument("--pool_style", default='max', help="max pool or avg pool")
    parser.add_argument("--controlnet_guidance_start", type=float, default=0.0, help="The stage when the controlnet starts to be applied")
    parser.add_argument("--controlnet_guidance_end", type=float, default=0.5, help="The stage when the controlnet end to be applied")
    parser.add_argument("--use_dynamic_cfg", type=bool, default=True, help="Use dynamic cfg")
    parser.add_argument("--lora_path", type=str, default=None, help="The path of the LoRA weights to be used")
    parser.add_argument("--lora_rank", type=int, default=128, help="The rank of the LoRA weights")
    parser.add_argument(
        "--output_path", type=str, default="./output", help="The path where the generated video will be saved"
    )
    parser.add_argument("--guidance_scale", type=float, default=6.0, help="The scale for classifier-free guidance")
    parser.add_argument(
        "--num_inference_steps", type=int, default=50, help="Number of steps for the inference process"
    )
    parser.add_argument("--num_videos_per_prompt", type=int, default=1, help="Number of videos to generate per prompt")
    parser.add_argument(
        "--dtype", type=str, default="bfloat16", help="The data type for computation (e.g., 'float16' or 'bfloat16')"
    )
    parser.add_argument("--seed", type=int, default=42, help="The seed for reproducibility")
    parser.add_argument("--height", type=int, default=480)
    parser.add_argument("--width", type=int, default=720)
    parser.add_argument("--num_frames", type=int, default=49)
    parser.add_argument("--start_camera_idx", type=int, default=0)
    parser.add_argument("--end_camera_idx", type=int, default=1)
    parser.add_argument("--controlnet_transformer_num_attn_heads", type=int, default=None)
    parser.add_argument("--controlnet_transformer_attention_head_dim", type=int, default=None)
    parser.add_argument("--controlnet_transformer_out_proj_dim_factor", type=int, default=None)
    parser.add_argument("--controlnet_transformer_out_proj_dim_zero_init", action="store_true", default=False, help=("Init project zero."),
    )
    parser.add_argument("--downscale_coef", type=int, default=8)
    parser.add_argument("--vae_channels", type=int, default=16)
    parser.add_argument("--controlnet_input_channels", type=int, default=6)
    parser.add_argument("--controlnet_transformer_num_layers", type=int, default=8)
    parser.add_argument("--enable_model_cpu_offload", action="store_true", default=False, help="Enable model CPU offload")

    args = parser.parse_args()
    dtype = torch.float16 if args.dtype == "float16" else torch.bfloat16
    generate_video(
        prompt=args.prompt,
        image=args.image,
        video_root_dir=args.video_root_dir,
        base_model_path=args.base_model_path,
        use_zero_conv=args.use_zero_conv,
        controlnet_model_path=args.controlnet_model_path,
        controlnet_weights=args.controlnet_weights,
        controlnet_guidance_start=args.controlnet_guidance_start,
        controlnet_guidance_end=args.controlnet_guidance_end,
        use_dynamic_cfg=args.use_dynamic_cfg,
        lora_path=args.lora_path,
        lora_rank=args.lora_rank,
        output_path=args.output_path,
        num_inference_steps=args.num_inference_steps,
        guidance_scale=args.guidance_scale,
        num_videos_per_prompt=args.num_videos_per_prompt,
        dtype=dtype,
        seed=args.seed,
        height=args.height,
        width=args.width,
        num_frames=args.num_frames,
        start_camera_idx=args.start_camera_idx,
        end_camera_idx=args.end_camera_idx,
        controlnet_transformer_num_attn_heads=args.controlnet_transformer_num_attn_heads,
        controlnet_transformer_attention_head_dim=args.controlnet_transformer_attention_head_dim,
        controlnet_transformer_out_proj_dim_factor=args.controlnet_transformer_out_proj_dim_factor,
        controlnet_transformer_num_layers=args.controlnet_transformer_num_layers,
        downscale_coef=args.downscale_coef,
        controlnet_input_channels=args.controlnet_input_channels,
        infer_with_mask=args.infer_with_mask,
        pool_style=args.pool_style,
        pipe_cpu_offload=args.enable_model_cpu_offload,
    )