File size: 6,616 Bytes
b14067d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82e411f
b14067d
 
 
 
 
 
 
 
 
 
 
 
 
82e411f
b14067d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35ab635
b14067d
 
 
 
 
 
82e411f
b14067d
 
 
 
 
 
 
82e411f
b14067d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35ab635
b14067d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
from demo import GetAnchorVideos
import os
from datetime import datetime
import argparse
import torch


def get_parser():
    parser = argparse.ArgumentParser()

    ## general
    parser.add_argument('--video_path', type=str, help='Input path')
    parser.add_argument(
        '--out_dir', type=str, required=True, help='Output dir'
    )
    parser.add_argument(
        '--device', type=str, default='cuda:0', help='The device to use'
    )
    parser.add_argument(
        '--exp_name',
        type=str,
        default=None,
        help='Experiment name, use video file name by default',
    )
    parser.add_argument(
        '--save_name',
        type=str,
        default=None,
        help='Experiment name, use video file name by default',
    )
    parser.add_argument(
        '--seed', type=int, default=43, help='Random seed for reproducibility'
    )
    parser.add_argument(
        '--video_length', type=int, default=49, help='Length of the video frames'
    )
    parser.add_argument('--fps', type=int, default=10, help='Fps for saved video')
    parser.add_argument(
        '--stride', type=int, default=1, help='Sampling stride for input video'
    )
    parser.add_argument('--server_name', type=str, help='Server IP address')

    ## render
    parser.add_argument(
        '--radius_scale',
        type=float,
        default=1.0,
        help='Scale factor for the spherical radius',
    )
    parser.add_argument('--camera', type=str, default='traj', help='traj or target')
    parser.add_argument(
        '--mode', type=str, default='gradual', help='gradual, bullet or direct'
    )
    parser.add_argument(
        '--mask', action='store_true', default=False, help='Clean the pcd if true'
    )
    parser.add_argument(
        '--traj_txt',
        type=str,
        help="Required for 'traj' camera, a txt file that specify camera trajectory",
    )
    parser.add_argument(
        '--target_pose',
        nargs=5,
        type=float,
        help="Required for 'target' mode, specify target camera pose, <theta phi r x y>",
    )
    parser.add_argument(
        '--near', type=float, default=0.0001, help='Near clipping plane distance'
    )
    parser.add_argument(
        '--far', type=float, default=10000.0, help='Far clipping plane distance'
    )
    parser.add_argument('--anchor_idx', type=int, default=0, help='One GT frame')

    ## diffusion
    parser.add_argument(
        '--low_gpu_memory_mode',
        type=bool,
        default=False,
        help='Enable low GPU memory mode',
    )
    # parser.add_argument('--model_name', type=str, default='checkpoints/CogVideoX-Fun-V1.1-5b-InP', help='Path to the model')
    parser.add_argument(
        '--model_name',
        type=str,
        default='/app/pretrained/CogVideoX-Fun-V1.1-5b-InP',
        help='Path to the model',
    )
    parser.add_argument(
        '--sampler_name',
        type=str,
        choices=["Euler", "Euler A", "DPM++", "PNDM", "DDIM_Cog", "DDIM_Origin"],
        default='DDIM_Origin',
        help='Choose the sampler',
    )
    # parser.add_argument('--transformer_path', type=str, default='checkpoints/TrajectoryCrafter/crosstransformer', help='Path to the pretrained transformer model')
    parser.add_argument(
        '--transformer_path',
        type=str,
        default="/app/pretrained/TrajectoryCrafter",
        help='Path to the pretrained transformer model',
    )
    parser.add_argument(
        '--sample_size',
        type=int,
        nargs=2,
        default=[384, 672],
        help='Sample size as [height, width]',
    )
    parser.add_argument(
        '--diffusion_guidance_scale',
        type=float,
        default=6.0,
        help='Guidance scale for inference',
    )
    parser.add_argument(
        '--diffusion_inference_steps',
        type=int,
        default=50,
        help='Number of inference steps',
    )
    parser.add_argument(
        '--prompt', type=str, default=None, help='Prompt for video generation'
    )
    parser.add_argument(
        '--negative_prompt',
        type=str,
        default="The video is not of a high quality, it has a low resolution. Watermark present in each frame. The background is solid. Strange body and strange trajectory. Distortion.",
        help='Negative prompt for video generation',
    )
    parser.add_argument(
        '--refine_prompt',
        type=str,
        default=". The video is of high quality, and the view is very clear. High quality, masterpiece, best quality, highres, ultra-detailed, fantastic.",
        help='Prompt for video generation',
    )
    parser.add_argument('--qwen_path', type=str, default="/app/pretrained/Qwen2.5-VL-7B-Instruct")

    ## depth
    # parser.add_argument('--unet_path', type=str, default='checkpoints/DepthCrafter', help='Path to the UNet model')
    parser.add_argument(
        '--unet_path',
        type=str,
        default="/app/pretrained/DepthCrafter",
        help='Path to the UNet model',
    )

    # parser.add_argument('--pre_train_path', type=str, default='checkpoints/stable-video-diffusion-img2vid-xt', help='Path to the pre-trained model')
    parser.add_argument(
        '--pre_train_path',
        type=str,
        default="/app/pretrained/stable-video-diffusion-img2vid",
        help='Path to the pre-trained model',
    )
    parser.add_argument(
        '--cpu_offload', type=str, default='model', help='CPU offload strategy'
    )
    parser.add_argument(
        '--depth_inference_steps', type=int, default=5, help='Number of inference steps'
    )
    parser.add_argument(
        '--depth_guidance_scale',
        type=float,
        default=1.0,
        help='Guidance scale for inference',
    )
    parser.add_argument(
        '--window_size', type=int, default=110, help='Window size for processing'
    )
    parser.add_argument(
        '--overlap', type=int, default=25, help='Overlap size for processing'
    )
    parser.add_argument(
        '--max_res', type=int, default=1024, help='Maximum resolution for processing'
    )

    return parser


if __name__ == "__main__":
    parser = get_parser()  # infer config.py
    opts = parser.parse_args()
    opts.weight_dtype = torch.bfloat16
    pvd = GetAnchorVideos(opts)
    if opts.mode == 'gradual':
        pvd.infer_gradual(opts)
    elif opts.mode == 'direct':
        pvd.infer_direct(opts)
    elif opts.mode == 'bullet':
        pvd.infer_bullet(opts)
    elif opts.mode == 'image':
        pvd.infer_image(opts)
    elif opts.mode == 'start_end':
        pvd.infer_start_end(opts)
    elif opts.mode == 'zoom':
        pvd.infer_zoom(opts)