File size: 8,102 Bytes
b14067d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import os
import random
import json
import torch

import torch.nn as nn
import torchvision.transforms as transforms
import torchvision.transforms.functional as F
import numpy as np

from decord import VideoReader
from torch.utils.data.dataset import Dataset
from packaging import version as pver

class RandomHorizontalFlipWithPose(nn.Module):
    def __init__(self, p=0.5):
        super(RandomHorizontalFlipWithPose, self).__init__()
        self.p = p

    def get_flip_flag(self, n_image):
        return torch.rand(n_image) < self.p

    def forward(self, image, flip_flag=None):
        n_image = image.shape[0]
        if flip_flag is not None:
            assert n_image == flip_flag.shape[0]
        else:
            flip_flag = self.get_flip_flag(n_image)

        ret_images = []
        for fflag, img in zip(flip_flag, image):
            if fflag:
                ret_images.append(F.hflip(img))
            else:
                ret_images.append(img)
        return torch.stack(ret_images, dim=0)

class RealEstate10KPCDRenderDataset(Dataset):
    def __init__(
            self,
            video_root_dir,
            sample_n_frames=49,
            image_size=[480, 720],
            shuffle_frames=False,
            hflip_p=0.0,
    ):
        if hflip_p != 0.0:
            use_flip = True
        else:
            use_flip = False
        root_path = video_root_dir
        self.root_path = root_path
        self.sample_n_frames = sample_n_frames
        self.source_video_root = os.path.join(self.root_path, 'videos')
        self.mask_video_root = os.path.join(self.root_path, 'masked_videos')
        self.captions_root = os.path.join(self.root_path, 'captions')
        self.dataset = sorted([n.replace('.mp4','') for n in os.listdir(self.source_video_root)])
        self.length = len(self.dataset)
        sample_size = image_size
        sample_size = tuple(sample_size) if not isinstance(sample_size, int) else (sample_size, sample_size)
        self.sample_size = sample_size
        if use_flip:
            pixel_transforms = [transforms.Resize(sample_size),
                                RandomHorizontalFlipWithPose(hflip_p),
                                transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)]
        else:
            pixel_transforms = [transforms.Resize(sample_size),
                                transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)]
        self.sample_wh_ratio = sample_size[1] / sample_size[0]

        self.pixel_transforms = pixel_transforms
        self.shuffle_frames = shuffle_frames
        self.use_flip = use_flip

    def load_video_reader(self, idx):
        clip_name = self.dataset[idx]
        video_path = os.path.join(self.source_video_root, clip_name + '.mp4')
        video_reader = VideoReader(video_path)
        mask_video_path = os.path.join(self.mask_video_root, clip_name + '.mp4')
        mask_video_reader = VideoReader(mask_video_path)
        caption_path = os.path.join(self.captions_root, clip_name + '.txt')
        if os.path.exists(caption_path):
            caption = open(caption_path, 'r').read().strip()
        else:
            caption = ''
        return clip_name, video_reader, mask_video_reader, caption

    def get_batch(self, idx):
        clip_name, video_reader, mask_video_reader, video_caption = self.load_video_reader(idx)
        if self.use_flip:
            flip_flag = self.pixel_transforms[1].get_flip_flag(self.sample_n_frames)
        else:
            flip_flag = torch.zeros(self.sample_n_frames, dtype=torch.bool)

        indices = np.arange(self.sample_n_frames)
        pixel_values = torch.from_numpy(video_reader.get_batch(indices).asnumpy()).permute(0, 3, 1, 2).contiguous()
        pixel_values = pixel_values / 255.
        
        anchor_pixels = torch.from_numpy(mask_video_reader.get_batch(indices).asnumpy()).permute(0, 3, 1, 2).contiguous()
        anchor_pixels = anchor_pixels / 255.
        
        return pixel_values, anchor_pixels, video_caption, flip_flag, clip_name

    def __len__(self):
        return self.length
    
    def __getitem__(self, idx):
        while True:
            try:
                video, anchor_video, video_caption, flip_flag, clip_name = self.get_batch(idx)
                break

            except Exception as e:
                idx = random.randint(0, self.length - 1)
        if self.use_flip:
            video = self.pixel_transforms[0](video)
            video = self.pixel_transforms[1](video, flip_flag)
            video = self.pixel_transforms[2](video)
            anchor_video = self.pixel_transforms[0](anchor_video)
            anchor_video = self.pixel_transforms[1](anchor_video, flip_flag)
            anchor_video = self.pixel_transforms[2](anchor_video)
        else:
            for transform in self.pixel_transforms:
                video = transform(video)
                anchor_video = transform(anchor_video)
        data = {
            'video': video, 
            'anchor_video': anchor_video,
            'caption': video_caption, 
        }
        return data
    
class RealEstate10KPCDRenderCapEmbDataset(RealEstate10KPCDRenderDataset):
    def __init__(
            self,
            video_root_dir,
            text_embedding_path,
            sample_n_frames=49,
            image_size=[480, 720],
            shuffle_frames=False,
            hflip_p=0.0,
    ):
        super().__init__(
            video_root_dir,
            sample_n_frames=sample_n_frames,
            image_size=image_size,
            shuffle_frames=shuffle_frames,
            hflip_p=hflip_p,
        )
        self.text_embedding_path = text_embedding_path
        self.mask_root = os.path.join(self.root_path, 'masks')

    def get_batch(self, idx):
        clip_name, video_reader, mask_video_reader, video_caption = self.load_video_reader(idx)
        cap_emb_path = os.path.join(self.text_embedding_path, clip_name + '.pt')
        video_caption_emb = torch.load(cap_emb_path, weights_only=True)
        if self.use_flip:
            flip_flag = self.pixel_transforms[1].get_flip_flag(self.sample_n_frames)
        else:
            flip_flag = torch.zeros(self.sample_n_frames, dtype=torch.bool)
        indices = np.arange(self.sample_n_frames)
        pixel_values = torch.from_numpy(video_reader.get_batch(indices).asnumpy()).permute(0, 3, 1, 2).contiguous()
        pixel_values = pixel_values / 255.
        
        anchor_pixels = torch.from_numpy(mask_video_reader.get_batch(indices).asnumpy()).permute(0, 3, 1, 2).contiguous()
        anchor_pixels = anchor_pixels / 255.
        try:
            masks = np.load(os.path.join(self.mask_root, clip_name + '.npz'))['mask']*1.0
            masks = torch.from_numpy(masks).unsqueeze(1)
        except:
            threshold = 0.1  # you can adjust this value
            masks = (anchor_pixels.sum(dim=1, keepdim=True) < threshold).float()
        return pixel_values, anchor_pixels, masks, video_caption_emb, flip_flag, clip_name
    
    def __getitem__(self, idx):
        while True:
            try:
                video, anchor_video, mask, video_caption_emb, flip_flag, clip_name = self.get_batch(idx)
                break

            except Exception as e:
                idx = random.randint(0, self.length - 1)
        if self.use_flip:
            video = self.pixel_transforms[0](video)
            video = self.pixel_transforms[1](video, flip_flag)
            video = self.pixel_transforms[2](video)
            anchor_video = self.pixel_transforms[0](anchor_video)
            anchor_video = self.pixel_transforms[1](anchor_video, flip_flag)
            anchor_video = self.pixel_transforms[2](anchor_video)
        else:
            for transform in self.pixel_transforms:
                video = transform(video)
                anchor_video = transform(anchor_video)
        data = {
            'video': video, 
            'anchor_video': anchor_video,
            'caption_emb': video_caption_emb, 
            'mask': mask
        }
        return data