EPiC-fps / inference /cli_demo_camera_i2v_pcd.py
roll-ai's picture
Upload 161 files
b14067d verified
raw
history blame
21.1 kB
import sys
import os
sys.path.insert(0, os.getcwd())
sys.path.append('.')
sys.path.append('..')
import argparse
import os
import torch
from transformers import T5EncoderModel, T5Tokenizer
from diffusers import (
CogVideoXDDIMScheduler,
CogVideoXDPMScheduler,
AutoencoderKLCogVideoX
)
from diffusers.utils import export_to_video, load_video
from controlnet_pipeline import ControlnetCogVideoXImageToVideoPCDPipeline
from cogvideo_transformer import CustomCogVideoXTransformer3DModel
from cogvideo_controlnet_pcd import CogVideoXControlnetPCD
from training.controlnet_datasets_camera_pcd_mask import RealEstate10KPCDRenderDataset
from torchvision.transforms.functional import to_pil_image
from inference.utils import stack_images_horizontally
from PIL import Image
import numpy as np
import torchvision.transforms as transforms
import cv2
import cv2
import numpy as np
import torch
import torch.nn.functional as F
import cv2
import numpy as np
import torch
def get_black_region_mask_tensor(video_tensor, threshold=2, kernel_size=15):
"""
Generate cleaned binary masks for black regions in a video tensor.
Args:
video_tensor (torch.Tensor): shape (T, H, W, 3), RGB, uint8
threshold (int): pixel intensity threshold to consider a pixel as black (default: 20)
kernel_size (int): morphological kernel size to smooth masks (default: 7)
Returns:
torch.Tensor: binary mask tensor of shape (T, H, W), where 1 indicates black region
"""
video_uint8 = ((video_tensor + 1.0) * 127.5).clamp(0, 255).to(torch.uint8).permute(0, 2, 3, 1) # shape (T, H, W, C)
video_np = video_uint8.numpy()
T, H, W, _ = video_np.shape
masks = np.empty((T, H, W), dtype=np.uint8)
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernel_size, kernel_size))
for t in range(T):
img = video_np[t] # (H, W, 3), uint8
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
_, mask = cv2.threshold(gray, threshold, 255, cv2.THRESH_BINARY_INV)
mask_cleaned = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)
masks[t] = (mask_cleaned > 0).astype(np.uint8)
return torch.from_numpy(masks)
def maxpool_mask_tensor(mask_tensor):
"""
Apply spatial and temporal max pooling to a binary mask tensor.
Args:
mask_tensor (torch.Tensor): shape (T, H, W), binary mask (0 or 1)
Returns:
torch.Tensor: shape (12, 30, 45), pooled binary mask
"""
T, H, W = mask_tensor.shape
assert T % 12 == 0, "T must be divisible by 12 (e.g., 48)"
assert H % 30 == 0 and W % 45 == 0, "H and W must be divisible by 30 and 45"
# Reshape to (B=T, C=1, H, W) for 2D spatial pooling
x = mask_tensor.unsqueeze(1).float() # (T, 1, H, W)
x_pooled = F.max_pool2d(x, kernel_size=(H // 30, W // 45)) # β†’ (T, 1, 30, 45)
# Temporal pooling: reshape to (12, T//12, 30, 45) and max along dim=1
t_groups = T // 12
x_pooled = x_pooled.view(12, t_groups, 30, 45)
pooled_mask = torch.amax(x_pooled, dim=1) # β†’ (12, 30, 45)
# Add a zero frame at the beginning: shape (1, 30, 45)
zero_frame = torch.zeros_like(pooled_mask[0:1]) # (1, 30, 45)
pooled_mask = torch.cat([zero_frame, pooled_mask], dim=0) # β†’ (13, 30, 45)
return 1 - pooled_mask.int()
def avgpool_mask_tensor(mask_tensor):
"""
Apply spatial and temporal average pooling to a binary mask tensor,
and threshold at 0.5 to retain only majority-active regions.
Args:
mask_tensor (torch.Tensor): shape (T, H, W), binary mask (0 or 1)
Returns:
torch.Tensor: shape (13, 30, 45), pooled binary mask with first frame zeroed
"""
T, H, W = mask_tensor.shape
assert T % 12 == 0, "T must be divisible by 12 (e.g., 48)"
assert H % 30 == 0 and W % 45 == 0, "H and W must be divisible by 30 and 45"
# Spatial average pooling
x = mask_tensor.unsqueeze(1).float() # (T, 1, H, W)
x_pooled = F.avg_pool2d(x, kernel_size=(H // 30, W // 45)) # β†’ (T, 1, 30, 45)
# Temporal pooling
t_groups = T // 12
x_pooled = x_pooled.view(12, t_groups, 30, 45)
pooled_avg = torch.mean(x_pooled, dim=1) # β†’ (12, 30, 45)
# Threshold: keep only when > 0.5
pooled_mask = (pooled_avg > 0.5).int()
# Add zero frame
zero_frame = torch.zeros_like(pooled_mask[0:1])
pooled_mask = torch.cat([zero_frame, pooled_mask], dim=0) # β†’ (13, 30, 45)
return 1 - pooled_mask # inverting as before
@torch.no_grad()
def generate_video(
prompt,
image,
video_root_dir: str,
base_model_path: str,
use_zero_conv: bool,
controlnet_model_path: str,
controlnet_weights: float = 1.0,
controlnet_guidance_start: float = 0.0,
controlnet_guidance_end: float = 1.0,
use_dynamic_cfg: bool = True,
lora_path: str = None,
lora_rank: int = 128,
output_path: str = "./output/",
num_inference_steps: int = 50,
guidance_scale: float = 6.0,
num_videos_per_prompt: int = 1,
dtype: torch.dtype = torch.bfloat16,
seed: int = 42,
num_frames: int = 49,
height: int = 480,
width: int = 720,
start_camera_idx: int = 0,
end_camera_idx: int = 1,
controlnet_transformer_num_attn_heads: int = None,
controlnet_transformer_attention_head_dim: int = None,
controlnet_transformer_out_proj_dim_factor: int = None,
controlnet_transformer_out_proj_dim_zero_init: bool = False,
controlnet_transformer_num_layers: int = 8,
downscale_coef: int = 8,
controlnet_input_channels: int = 6,
infer_with_mask: bool = False,
pool_style: str = 'avg',
pipe_cpu_offload: bool = False,
):
"""
Generates a video based on the given prompt and saves it to the specified path.
Parameters:
- prompt (str): The description of the video to be generated.
- video_root_dir (str): The path to the camera dataset
- annotation_json (str): Name of subset (train.json or test.json)
- base_model_path (str): The path of the pre-trained model to be used.
- controlnet_model_path (str): The path of the pre-trained conrolnet model to be used.
- controlnet_weights (float): Strenght of controlnet
- controlnet_guidance_start (float): The stage when the controlnet starts to be applied
- controlnet_guidance_end (float): The stage when the controlnet end to be applied
- lora_path (str): The path of the LoRA weights to be used.
- lora_rank (int): The rank of the LoRA weights.
- output_path (str): The path where the generated video will be saved.
- num_inference_steps (int): Number of steps for the inference process. More steps can result in better quality.
- guidance_scale (float): The scale for classifier-free guidance. Higher values can lead to better alignment with the prompt.
- num_videos_per_prompt (int): Number of videos to generate per prompt.
- dtype (torch.dtype): The data type for computation (default is torch.bfloat16).
- seed (int): The seed for reproducibility.
"""
os.makedirs(output_path, exist_ok=True)
# 1. Load the pre-trained CogVideoX pipeline with the specified precision (bfloat16).
tokenizer = T5Tokenizer.from_pretrained(
base_model_path, subfolder="tokenizer"
)
text_encoder = T5EncoderModel.from_pretrained(
base_model_path, subfolder="text_encoder"
)
transformer = CustomCogVideoXTransformer3DModel.from_pretrained(
base_model_path, subfolder="transformer"
)
vae = AutoencoderKLCogVideoX.from_pretrained(
base_model_path, subfolder="vae"
)
scheduler = CogVideoXDDIMScheduler.from_pretrained(
base_model_path, subfolder="scheduler"
)
# ControlNet
num_attention_heads_orig = 48 if "5b" in base_model_path.lower() else 30
controlnet_kwargs = {}
if controlnet_transformer_num_attn_heads is not None:
controlnet_kwargs["num_attention_heads"] = args.controlnet_transformer_num_attn_heads
else:
controlnet_kwargs["num_attention_heads"] = num_attention_heads_orig
if controlnet_transformer_attention_head_dim is not None:
controlnet_kwargs["attention_head_dim"] = controlnet_transformer_attention_head_dim
if controlnet_transformer_out_proj_dim_factor is not None:
controlnet_kwargs["out_proj_dim"] = num_attention_heads_orig * controlnet_transformer_out_proj_dim_factor
controlnet_kwargs["out_proj_dim_zero_init"] = controlnet_transformer_out_proj_dim_zero_init
controlnet = CogVideoXControlnetPCD(
num_layers=controlnet_transformer_num_layers,
downscale_coef=downscale_coef,
in_channels=controlnet_input_channels,
use_zero_conv=use_zero_conv,
**controlnet_kwargs,
)
if controlnet_model_path:
ckpt = torch.load(controlnet_model_path, map_location='cpu', weights_only=False)
controlnet_state_dict = {}
for name, params in ckpt['state_dict'].items():
controlnet_state_dict[name] = params
m, u = controlnet.load_state_dict(controlnet_state_dict, strict=False)
print(f'[ Weights from pretrained controlnet was loaded into controlnet ] [M: {len(m)} | U: {len(u)}]')
# Full pipeline
pipe = ControlnetCogVideoXImageToVideoPCDPipeline(
tokenizer=tokenizer,
text_encoder=text_encoder,
transformer=transformer,
vae=vae,
controlnet=controlnet,
scheduler=scheduler,
).to('cuda')
# If you're using with lora, add this code
if lora_path:
pipe.load_lora_weights(lora_path, weight_name="pytorch_lora_weights.safetensors", adapter_name="test_1")
pipe.fuse_lora(lora_scale=1 / lora_rank)
# 2. Set Scheduler.
# Can be changed to `CogVideoXDPMScheduler` or `CogVideoXDDIMScheduler`.
# We recommend using `CogVideoXDDIMScheduler` for CogVideoX-2B.
# using `CogVideoXDPMScheduler` for CogVideoX-5B / CogVideoX-5B-I2V.
# pipe.scheduler = CogVideoXDDIMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
# 3. Enable CPU offload for the model.
# turn off if you have multiple GPUs or enough GPU memory(such as H100) and it will cost less time in inference
# and enable to("cuda")
# pipe.to("cuda")
pipe = pipe.to(dtype=dtype)
# pipe.enable_sequential_cpu_offload()
if pipe_cpu_offload:
pipe.enable_model_cpu_offload()
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()
# 4. Load dataset
eval_dataset = RealEstate10KPCDRenderDataset(
video_root_dir=video_root_dir,
image_size=(height, width),
sample_n_frames=num_frames,
)
None_prompt = True
if prompt:
None_prompt = False
print(eval_dataset.dataset)
for camera_idx in range(start_camera_idx, end_camera_idx):
# Get data
data_dict = eval_dataset[camera_idx]
reference_video = data_dict['video']
anchor_video = data_dict['anchor_video']
print(eval_dataset.dataset[camera_idx],seed)
if None_prompt:
# Set output directory
output_path_file = os.path.join(output_path, f"{camera_idx:05d}_{seed}_out.mp4")
prompt = data_dict['caption']
else:
# Set output directory
output_path_file = os.path.join(output_path, f"{prompt[:10]}_{camera_idx:05d}_{seed}_out.mp4")
if image is None:
input_images = reference_video[0].unsqueeze(0)
else:
input_images = torch.tensor(np.array(Image.open(image))).permute(2,0,1).unsqueeze(0)/255
pixel_transforms = [transforms.Resize((480, 720)),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)]
for transform in pixel_transforms:
input_images = transform(input_images)
# if image is None:
# input_images = reference_video[:24]
# else:
# input_images = torch.tensor(np.array(Image.open(image))).permute(2,0,1)/255
# pixel_transforms = [transforms.Resize((480, 720)),
# transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)]
# for transform in pixel_transforms:
# input_images = transform(input_images)
reference_frames = [to_pil_image(frame) for frame in ((reference_video)/2+0.5)]
output_path_file_reference = output_path_file.replace("_out.mp4", "_reference.mp4")
output_path_file_out_reference = output_path_file.replace(".mp4", "_reference.mp4")
if infer_with_mask:
try:
video_mask = 1 - torch.from_numpy(np.load(os.path.join(eval_dataset.root_path,'masks',eval_dataset.dataset[camera_idx]+'.npz'))['mask']*1)
except:
print('using derived mask')
video_mask = get_black_region_mask_tensor(anchor_video)
if pool_style == 'max':
controlnet_output_mask = maxpool_mask_tensor(video_mask[1:]).flatten().unsqueeze(0).unsqueeze(-1).to('cuda')
elif pool_style == 'avg':
controlnet_output_mask = avgpool_mask_tensor(video_mask[1:]).flatten().unsqueeze(0).unsqueeze(-1).to('cuda')
else:
controlnet_output_mask = None
# if os.path.isfile(output_path_file):
# continue
# 5. Generate the video frames based on the prompt.
# `num_frames` is the Number of frames to generate.
# This is the default value for 6 seconds video and 8 fps and will plus 1 frame for the first frame and 49 frames.
video_generate_all = pipe(
image=input_images,
anchor_video=anchor_video,
controlnet_output_mask=controlnet_output_mask,
prompt=prompt,
num_videos_per_prompt=num_videos_per_prompt, # Number of videos to generate per prompt
num_inference_steps=num_inference_steps, # Number of inference steps
num_frames=num_frames, # Number of frames to generate,changed to 49 for diffusers version `0.30.3` and after.
use_dynamic_cfg=use_dynamic_cfg, # This id used for DPM Sechduler, for DDIM scheduler, it should be False
guidance_scale=guidance_scale,
generator=torch.Generator().manual_seed(seed), # Set the seed for reproducibility
controlnet_weights=controlnet_weights,
controlnet_guidance_start=controlnet_guidance_start,
controlnet_guidance_end=controlnet_guidance_end,
).frames
video_generate = video_generate_all[0]
# 6. Export the generated frames to a video file. fps must be 8 for original video.
export_to_video(video_generate, output_path_file, fps=8)
export_to_video(reference_frames, output_path_file_reference, fps=8)
out_reference_frames = [
stack_images_horizontally(frame_reference, frame_out)
for frame_out, frame_reference in zip(video_generate, reference_frames)
]
anchor_video = [to_pil_image(frame) for frame in ((anchor_video)/2+0.5)]
out_reference_frames = [
stack_images_horizontally(frame_out, frame_reference)
for frame_out, frame_reference in zip(out_reference_frames, anchor_video)
]
export_to_video(out_reference_frames, output_path_file_out_reference, fps=8)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Generate a video from a text prompt using CogVideoX")
parser.add_argument("--prompt", type=str, default=None, help="The description of the video to be generated")
parser.add_argument("--image", type=str, default=None, help="The reference image of the video to be generated")
parser.add_argument(
"--video_root_dir",
type=str,
required=True,
help="The path of the video for controlnet processing.",
)
parser.add_argument(
"--base_model_path", type=str, default="THUDM/CogVideoX-5b", help="The path of the pre-trained model to be used"
)
parser.add_argument(
"--controlnet_model_path", type=str, default="TheDenk/cogvideox-5b-controlnet-hed-v1", help="The path of the controlnet pre-trained model to be used"
)
parser.add_argument("--controlnet_weights", type=float, default=0.5, help="Strenght of controlnet")
parser.add_argument("--use_zero_conv", action="store_true", default=False, help="Use zero conv")
parser.add_argument("--infer_with_mask", action="store_true", default=False, help="add mask to controlnet")
parser.add_argument("--pool_style", default='max', help="max pool or avg pool")
parser.add_argument("--controlnet_guidance_start", type=float, default=0.0, help="The stage when the controlnet starts to be applied")
parser.add_argument("--controlnet_guidance_end", type=float, default=0.5, help="The stage when the controlnet end to be applied")
parser.add_argument("--use_dynamic_cfg", type=bool, default=True, help="Use dynamic cfg")
parser.add_argument("--lora_path", type=str, default=None, help="The path of the LoRA weights to be used")
parser.add_argument("--lora_rank", type=int, default=128, help="The rank of the LoRA weights")
parser.add_argument(
"--output_path", type=str, default="./output", help="The path where the generated video will be saved"
)
parser.add_argument("--guidance_scale", type=float, default=6.0, help="The scale for classifier-free guidance")
parser.add_argument(
"--num_inference_steps", type=int, default=50, help="Number of steps for the inference process"
)
parser.add_argument("--num_videos_per_prompt", type=int, default=1, help="Number of videos to generate per prompt")
parser.add_argument(
"--dtype", type=str, default="bfloat16", help="The data type for computation (e.g., 'float16' or 'bfloat16')"
)
parser.add_argument("--seed", type=int, default=42, help="The seed for reproducibility")
parser.add_argument("--height", type=int, default=480)
parser.add_argument("--width", type=int, default=720)
parser.add_argument("--num_frames", type=int, default=49)
parser.add_argument("--start_camera_idx", type=int, default=0)
parser.add_argument("--end_camera_idx", type=int, default=1)
parser.add_argument("--controlnet_transformer_num_attn_heads", type=int, default=None)
parser.add_argument("--controlnet_transformer_attention_head_dim", type=int, default=None)
parser.add_argument("--controlnet_transformer_out_proj_dim_factor", type=int, default=None)
parser.add_argument("--controlnet_transformer_out_proj_dim_zero_init", action="store_true", default=False, help=("Init project zero."),
)
parser.add_argument("--downscale_coef", type=int, default=8)
parser.add_argument("--vae_channels", type=int, default=16)
parser.add_argument("--controlnet_input_channels", type=int, default=6)
parser.add_argument("--controlnet_transformer_num_layers", type=int, default=8)
parser.add_argument("--enable_model_cpu_offload", action="store_true", default=False, help="Enable model CPU offload")
args = parser.parse_args()
dtype = torch.float16 if args.dtype == "float16" else torch.bfloat16
generate_video(
prompt=args.prompt,
image=args.image,
video_root_dir=args.video_root_dir,
base_model_path=args.base_model_path,
use_zero_conv=args.use_zero_conv,
controlnet_model_path=args.controlnet_model_path,
controlnet_weights=args.controlnet_weights,
controlnet_guidance_start=args.controlnet_guidance_start,
controlnet_guidance_end=args.controlnet_guidance_end,
use_dynamic_cfg=args.use_dynamic_cfg,
lora_path=args.lora_path,
lora_rank=args.lora_rank,
output_path=args.output_path,
num_inference_steps=args.num_inference_steps,
guidance_scale=args.guidance_scale,
num_videos_per_prompt=args.num_videos_per_prompt,
dtype=dtype,
seed=args.seed,
height=args.height,
width=args.width,
num_frames=args.num_frames,
start_camera_idx=args.start_camera_idx,
end_camera_idx=args.end_camera_idx,
controlnet_transformer_num_attn_heads=args.controlnet_transformer_num_attn_heads,
controlnet_transformer_attention_head_dim=args.controlnet_transformer_attention_head_dim,
controlnet_transformer_out_proj_dim_factor=args.controlnet_transformer_out_proj_dim_factor,
controlnet_transformer_num_layers=args.controlnet_transformer_num_layers,
downscale_coef=args.downscale_coef,
controlnet_input_channels=args.controlnet_input_channels,
infer_with_mask=args.infer_with_mask,
pool_style=args.pool_style,
pipe_cpu_offload=args.enable_model_cpu_offload,
)