EPiC-fps / cogvideo_controlnet_pcd.py
roll-ai's picture
Upload 161 files
b14067d verified
raw
history blame
10 kB
from typing import Any, Dict, Optional, Tuple, Union
import torch
from torch import nn
from einops import rearrange
import torch.nn.functional as F
from diffusers.models.transformers.cogvideox_transformer_3d import Transformer2DModelOutput, CogVideoXBlock
from diffusers.utils import is_torch_version
from diffusers.loaders import PeftAdapterMixin
from diffusers.utils.torch_utils import maybe_allow_in_graph
from diffusers.models.embeddings import CogVideoXPatchEmbed, TimestepEmbedding, Timesteps, get_3d_sincos_pos_embed
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.attention import Attention, FeedForward
from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor2_0
from diffusers.models.normalization import AdaLayerNorm, CogVideoXLayerNormZero, AdaLayerNormZeroSingle
from diffusers.configuration_utils import ConfigMixin, register_to_config
class CogVideoXControlnetPCD(ModelMixin, ConfigMixin, PeftAdapterMixin):
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
num_attention_heads: int = 30,
use_zero_conv: bool = False,
attention_head_dim: int = 64,
vae_channels: int = 16,
in_channels: int = 3,
downscale_coef: int = 8,
flip_sin_to_cos: bool = True,
freq_shift: int = 0,
time_embed_dim: int = 512,
num_layers: int = 8,
dropout: float = 0.0,
attention_bias: bool = True,
sample_width: int = 90,
sample_height: int = 60,
sample_frames: int = 49,
patch_size: int = 2,
temporal_compression_ratio: int = 4,
max_text_seq_length: int = 226,
activation_fn: str = "gelu-approximate",
timestep_activation_fn: str = "silu",
norm_elementwise_affine: bool = True,
norm_eps: float = 1e-5,
spatial_interpolation_scale: float = 1.875,
temporal_interpolation_scale: float = 1.0,
use_rotary_positional_embeddings: bool = False,
use_learned_positional_embeddings: bool = False,
out_proj_dim: int = None,
out_proj_dim_zero_init: bool = False,
):
super().__init__()
inner_dim = num_attention_heads * attention_head_dim
if not use_rotary_positional_embeddings and use_learned_positional_embeddings:
raise ValueError(
"There are no CogVideoX checkpoints available with disable rotary embeddings and learned positional "
"embeddings. If you're using a custom model and/or believe this should be supported, please open an "
"issue at https://github.com/huggingface/diffusers/issues."
)
self.vae_channels = vae_channels
start_channels = in_channels * (downscale_coef ** 2)
input_channels = [start_channels, start_channels // 2, start_channels // 4]
self.unshuffle = nn.PixelUnshuffle(downscale_coef)
self.use_zero_conv = use_zero_conv
if use_zero_conv:
self.controlnet_encode_first = nn.Sequential(
nn.Conv2d(input_channels[0], input_channels[1], kernel_size=1, stride=1, padding=0),
nn.GroupNorm(2, input_channels[1]),
nn.ReLU(),
)
self.controlnet_encode_second = nn.Sequential(
nn.Conv2d(input_channels[1], input_channels[2], kernel_size=1, stride=1, padding=0),
nn.GroupNorm(2, input_channels[2]),
nn.ReLU(),
)
patch_embed_in_channels = vae_channels + input_channels[2]
else:
patch_embed_in_channels = vae_channels*2
# 1. Patch embedding
self.patch_embed = CogVideoXPatchEmbed(
patch_size=patch_size,
in_channels=patch_embed_in_channels,
embed_dim=inner_dim,
bias=True,
sample_width=sample_width,
sample_height=sample_height,
sample_frames=sample_frames,
temporal_compression_ratio=temporal_compression_ratio,
spatial_interpolation_scale=spatial_interpolation_scale,
temporal_interpolation_scale=temporal_interpolation_scale,
use_positional_embeddings=not use_rotary_positional_embeddings,
use_learned_positional_embeddings=use_learned_positional_embeddings,
)
self.embedding_dropout = nn.Dropout(dropout)
# 2. Time embeddings
self.time_proj = Timesteps(inner_dim, flip_sin_to_cos, freq_shift)
self.time_embedding = TimestepEmbedding(inner_dim, time_embed_dim, timestep_activation_fn)
# 3. Define spatio-temporal transformers blocks
self.transformer_blocks = nn.ModuleList(
[
CogVideoXBlock(
dim=inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
time_embed_dim=time_embed_dim,
dropout=dropout,
activation_fn=activation_fn,
attention_bias=attention_bias,
norm_elementwise_affine=norm_elementwise_affine,
norm_eps=norm_eps,
)
for _ in range(num_layers)
]
)
self.out_projectors = None
if out_proj_dim is not None:
self.out_projectors = nn.ModuleList(
[nn.Linear(inner_dim, out_proj_dim) for _ in range(num_layers)]
)
if out_proj_dim_zero_init:
for out_projector in self.out_projectors:
self.zeros_init_linear(out_projector)
self.gradient_checkpointing = False
def zeros_init_linear(self, linear: nn.Module):
if isinstance(linear, (nn.Linear, nn.Conv1d)):
if hasattr(linear, "weight"):
nn.init.zeros_(linear.weight)
if hasattr(linear, "bias"):
nn.init.zeros_(linear.bias)
def _set_gradient_checkpointing(self, module, value=False):
self.gradient_checkpointing = value
def compress_time(self, x, num_frames):
x = rearrange(x, '(b f) c h w -> b f c h w', f=num_frames)
batch_size, frames, channels, height, width = x.shape
x = rearrange(x, 'b f c h w -> (b h w) c f')
if x.shape[-1] % 2 == 1:
x_first, x_rest = x[..., 0], x[..., 1:]
if x_rest.shape[-1] > 0:
x_rest = F.avg_pool1d(x_rest, kernel_size=2, stride=2)
x = torch.cat([x_first[..., None], x_rest], dim=-1)
else:
x = F.avg_pool1d(x, kernel_size=2, stride=2)
x = rearrange(x, '(b h w) c f -> (b f) c h w', b=batch_size, h=height, w=width)
return x
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
controlnet_states: Tuple[torch.Tensor, torch.Tensor],
timestep: Union[int, float, torch.LongTensor],
controlnet_output_mask: Optional[torch.Tensor] = None,
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
timestep_cond: Optional[torch.Tensor] = None,
return_dict: bool = True,
):
hidden_states = torch.cat([hidden_states, controlnet_states], dim=2)
# controlnet_states = self.controlnext_encoder(controlnet_states, timestep=timestep)
# 1. Time embedding
timesteps = timestep
t_emb = self.time_proj(timesteps)
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might actually be running in fp16. so we need to cast here.
# there might be better ways to encapsulate this.
t_emb = t_emb.to(dtype=hidden_states.dtype)
emb = self.time_embedding(t_emb, timestep_cond)
hidden_states = self.patch_embed(encoder_hidden_states, hidden_states)
hidden_states = self.embedding_dropout(hidden_states)
text_seq_length = encoder_hidden_states.shape[1]
encoder_hidden_states = hidden_states[:, :text_seq_length]
hidden_states = hidden_states[:, text_seq_length:]
controlnet_hidden_states = ()
# 3. Transformer blocks
for i, block in enumerate(self.transformer_blocks):
if self.training and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
encoder_hidden_states,
emb,
image_rotary_emb,
**ckpt_kwargs,
)
else:
hidden_states, encoder_hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
temb=emb,
image_rotary_emb=image_rotary_emb,
)
if self.out_projectors is not None:
if controlnet_output_mask is not None:
controlnet_hidden_states += (self.out_projectors[i](hidden_states) * controlnet_output_mask,)
else:
controlnet_hidden_states += (self.out_projectors[i](hidden_states),)
else:
controlnet_hidden_states += (hidden_states,)
if not return_dict:
return (controlnet_hidden_states,)
return Transformer2DModelOutput(sample=controlnet_hidden_states)