|
from typing import Union, Tuple |
|
|
|
import torch |
|
from diffusers import UNetSpatioTemporalConditionModel |
|
from diffusers.models.unets.unet_spatio_temporal_condition import UNetSpatioTemporalConditionOutput |
|
|
|
|
|
class DiffusersUNetSpatioTemporalConditionModelDepthCrafter( |
|
UNetSpatioTemporalConditionModel |
|
): |
|
|
|
def forward( |
|
self, |
|
sample: torch.Tensor, |
|
timestep: Union[torch.Tensor, float, int], |
|
encoder_hidden_states: torch.Tensor, |
|
added_time_ids: torch.Tensor, |
|
return_dict: bool = True, |
|
) -> Union[UNetSpatioTemporalConditionOutput, Tuple]: |
|
|
|
|
|
timesteps = timestep |
|
if not torch.is_tensor(timesteps): |
|
|
|
|
|
is_mps = sample.device.type == "mps" |
|
if isinstance(timestep, float): |
|
dtype = torch.float32 if is_mps else torch.float64 |
|
else: |
|
dtype = torch.int32 if is_mps else torch.int64 |
|
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) |
|
elif len(timesteps.shape) == 0: |
|
timesteps = timesteps[None].to(sample.device) |
|
|
|
|
|
batch_size, num_frames = sample.shape[:2] |
|
timesteps = timesteps.expand(batch_size) |
|
|
|
t_emb = self.time_proj(timesteps) |
|
|
|
|
|
|
|
|
|
t_emb = t_emb.to(dtype=self.conv_in.weight.dtype) |
|
|
|
emb = self.time_embedding(t_emb) |
|
|
|
time_embeds = self.add_time_proj(added_time_ids.flatten()) |
|
time_embeds = time_embeds.reshape((batch_size, -1)) |
|
time_embeds = time_embeds.to(emb.dtype) |
|
aug_emb = self.add_embedding(time_embeds) |
|
emb = emb + aug_emb |
|
|
|
|
|
|
|
sample = sample.flatten(0, 1) |
|
|
|
|
|
emb = emb.repeat_interleave(num_frames, dim=0) |
|
|
|
encoder_hidden_states = encoder_hidden_states.flatten(0, 1).unsqueeze(1) |
|
|
|
|
|
sample = sample.to(dtype=self.conv_in.weight.dtype) |
|
assert sample.dtype == self.conv_in.weight.dtype, ( |
|
f"sample.dtype: {sample.dtype}, " |
|
f"self.conv_in.weight.dtype: {self.conv_in.weight.dtype}" |
|
) |
|
sample = self.conv_in(sample) |
|
|
|
image_only_indicator = torch.zeros( |
|
batch_size, num_frames, dtype=sample.dtype, device=sample.device |
|
) |
|
|
|
down_block_res_samples = (sample,) |
|
for downsample_block in self.down_blocks: |
|
if ( |
|
hasattr(downsample_block, "has_cross_attention") |
|
and downsample_block.has_cross_attention |
|
): |
|
sample, res_samples = downsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
encoder_hidden_states=encoder_hidden_states, |
|
image_only_indicator=image_only_indicator, |
|
) |
|
|
|
else: |
|
sample, res_samples = downsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
image_only_indicator=image_only_indicator, |
|
) |
|
|
|
down_block_res_samples += res_samples |
|
|
|
|
|
sample = self.mid_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
encoder_hidden_states=encoder_hidden_states, |
|
image_only_indicator=image_only_indicator, |
|
) |
|
|
|
|
|
for i, upsample_block in enumerate(self.up_blocks): |
|
res_samples = down_block_res_samples[-len(upsample_block.resnets) :] |
|
down_block_res_samples = down_block_res_samples[ |
|
: -len(upsample_block.resnets) |
|
] |
|
|
|
if ( |
|
hasattr(upsample_block, "has_cross_attention") |
|
and upsample_block.has_cross_attention |
|
): |
|
sample = upsample_block( |
|
hidden_states=sample, |
|
res_hidden_states_tuple=res_samples, |
|
temb=emb, |
|
encoder_hidden_states=encoder_hidden_states, |
|
image_only_indicator=image_only_indicator, |
|
) |
|
else: |
|
sample = upsample_block( |
|
hidden_states=sample, |
|
res_hidden_states_tuple=res_samples, |
|
temb=emb, |
|
image_only_indicator=image_only_indicator, |
|
) |
|
|
|
|
|
sample = self.conv_norm_out(sample) |
|
sample = self.conv_act(sample) |
|
sample = self.conv_out(sample) |
|
|
|
|
|
sample = sample.reshape(batch_size, num_frames, *sample.shape[1:]) |
|
|
|
if not return_dict: |
|
return (sample,) |
|
|
|
return UNetSpatioTemporalConditionOutput(sample=sample) |
|
|