|
import numpy as np |
|
import cv2 |
|
import PIL |
|
from PIL import Image |
|
import os |
|
from datetime import datetime |
|
import pdb |
|
import torch.nn.functional as F |
|
import numpy as np |
|
import os |
|
import cv2 |
|
import copy |
|
from scipy.interpolate import UnivariateSpline, interp1d |
|
import numpy as np |
|
import PIL.Image |
|
import torch |
|
import torchvision |
|
from tqdm import tqdm |
|
from pathlib import Path |
|
from typing import Tuple, Optional |
|
import cv2 |
|
import PIL |
|
import numpy |
|
import skimage.io |
|
import torch |
|
import torch.nn.functional as F |
|
from decord import VideoReader, cpu |
|
|
|
from PIL import Image |
|
|
|
def read_video_frames(video_path, process_length, stride, max_res, dataset="open"): |
|
def is_image(path): |
|
return any(path.lower().endswith(ext) for ext in ['.jpg', '.jpeg', '.png', '.bmp']) |
|
|
|
if is_image(video_path): |
|
print("==> Detected image. Loading as single-frame video:", video_path) |
|
img = Image.open(video_path).convert("RGB") |
|
|
|
width = 1024 |
|
height = 576 |
|
img = img.resize((width, height), Image.BICUBIC) |
|
img = np.array(img).astype("float32") / 255.0 |
|
frames = img[None, ...] |
|
print(f"==> image shape: {frames.shape}") |
|
return frames |
|
|
|
if dataset == "open": |
|
print("==> processing video:", video_path) |
|
vid = VideoReader(video_path, ctx=cpu(0)) |
|
print("==> original video shape:", (len(vid), *vid.get_batch([0]).shape[1:])) |
|
|
|
|
|
width = 1024 |
|
height = 576 |
|
|
|
vid = VideoReader(video_path, ctx=cpu(0), width=width, height=height) |
|
|
|
frames_idx = list(range(0, len(vid), stride)) |
|
print(f"==> downsampled shape: {(len(frames_idx), *vid.get_batch([0]).shape[1:])}, with stride: {stride}") |
|
if process_length != -1 and process_length < len(frames_idx): |
|
frames_idx = frames_idx[:process_length] |
|
print(f"==> final processing shape: {(len(frames_idx), *vid.get_batch([0]).shape[1:])}") |
|
frames = vid.get_batch(frames_idx).asnumpy().astype("float32") / 255.0 |
|
|
|
return frames |
|
|
|
|
|
|
|
def save_video(data, images_path, folder=None, fps=8): |
|
if isinstance(data, np.ndarray): |
|
tensor_data = (torch.from_numpy(data) * 255).to(torch.uint8) |
|
elif isinstance(data, torch.Tensor): |
|
tensor_data = (data.detach().cpu() * 255).to(torch.uint8) |
|
elif isinstance(data, list): |
|
folder = [folder] * len(data) |
|
images = [ |
|
np.array(Image.open(os.path.join(folder_name, path))) |
|
for folder_name, path in zip(folder, data) |
|
] |
|
stacked_images = np.stack(images, axis=0) |
|
tensor_data = torch.from_numpy(stacked_images).to(torch.uint8) |
|
torchvision.io.write_video( |
|
images_path, tensor_data, fps=fps, video_codec='h264', options={'crf': '10'} |
|
) |
|
|
|
|
|
def sphere2pose(c2ws_input, theta, phi, r, device, x=None, y=None): |
|
c2ws = copy.deepcopy(c2ws_input) |
|
|
|
|
|
|
|
c2ws[:, 2, 3] -= r |
|
if x is not None: |
|
c2ws[:, 1, 3] += y |
|
if y is not None: |
|
c2ws[:, 0, 3] -= x |
|
|
|
theta = torch.deg2rad(torch.tensor(theta)).to(device) |
|
sin_value_x = torch.sin(theta) |
|
cos_value_x = torch.cos(theta) |
|
rot_mat_x = ( |
|
torch.tensor( |
|
[ |
|
[1, 0, 0, 0], |
|
[0, cos_value_x, -sin_value_x, 0], |
|
[0, sin_value_x, cos_value_x, 0], |
|
[0, 0, 0, 1], |
|
] |
|
) |
|
.unsqueeze(0) |
|
.repeat(c2ws.shape[0], 1, 1) |
|
.to(device) |
|
) |
|
|
|
phi = torch.deg2rad(torch.tensor(phi)).to(device) |
|
sin_value_y = torch.sin(phi) |
|
cos_value_y = torch.cos(phi) |
|
rot_mat_y = ( |
|
torch.tensor( |
|
[ |
|
[cos_value_y, 0, sin_value_y, 0], |
|
[0, 1, 0, 0], |
|
[-sin_value_y, 0, cos_value_y, 0], |
|
[0, 0, 0, 1], |
|
] |
|
) |
|
.unsqueeze(0) |
|
.repeat(c2ws.shape[0], 1, 1) |
|
.to(device) |
|
) |
|
|
|
c2ws = torch.matmul(rot_mat_x, c2ws) |
|
c2ws = torch.matmul(rot_mat_y, c2ws) |
|
|
|
return c2ws |
|
|
|
|
|
def generate_traj_specified(c2ws_anchor, theta, phi, d_r, d_x, d_y, frame, device): |
|
|
|
thetas = np.linspace(0, theta, frame) |
|
phis = np.linspace(0, phi, frame) |
|
rs = np.linspace(0, d_r, frame) |
|
xs = np.linspace(0, d_x, frame) |
|
ys = np.linspace(0, d_y, frame) |
|
c2ws_list = [] |
|
for th, ph, r, x, y in zip(thetas, phis, rs, xs, ys): |
|
c2w_new = sphere2pose( |
|
c2ws_anchor, |
|
np.float32(th), |
|
np.float32(ph), |
|
np.float32(r), |
|
device, |
|
np.float32(x), |
|
np.float32(y), |
|
) |
|
c2ws_list.append(c2w_new) |
|
c2ws = torch.cat(c2ws_list, dim=0) |
|
return c2ws |
|
|
|
def generate_traj_specified_fast(c2ws_anchor, theta, phi, d_r, d_x, d_y, frame, device): |
|
half = frame // 3 |
|
|
|
thetas = np.linspace(0, theta, half) |
|
phis = np.linspace(0, phi, half) |
|
rs = np.linspace(0, d_r, half) |
|
xs = np.linspace(0, d_x, half) |
|
ys = np.linspace(0, d_y, half) |
|
|
|
c2ws_list = [] |
|
|
|
for th, ph, r, x, y in zip(thetas, phis, rs, xs, ys): |
|
c2w_new = sphere2pose( |
|
c2ws_anchor, |
|
np.float32(th), |
|
np.float32(ph), |
|
np.float32(r), |
|
device, |
|
np.float32(x), |
|
np.float32(y), |
|
) |
|
c2ws_list.append(c2w_new) |
|
|
|
last_c2w = c2ws_list[-1] |
|
for _ in range(frame - half): |
|
c2ws_list.append(last_c2w.clone()) |
|
|
|
c2ws = torch.cat(c2ws_list, dim=0) |
|
return c2ws |
|
|
|
|
|
def txt_interpolation(input_list, n, mode='smooth'): |
|
x = np.linspace(0, 1, len(input_list)) |
|
if mode == 'smooth': |
|
f = UnivariateSpline(x, input_list, k=3) |
|
elif mode == 'linear': |
|
f = interp1d(x, input_list) |
|
else: |
|
raise KeyError(f"Invalid txt interpolation mode: {mode}") |
|
xnew = np.linspace(0, 1, n) |
|
ynew = f(xnew) |
|
return ynew |
|
|
|
|
|
def generate_traj_txt(c2ws_anchor, phi, theta, r, frame, device): |
|
|
|
""" |
|
The camera coordinate sysmte in COLMAP is right-down-forward |
|
Pytorch3D is left-up-forward |
|
""" |
|
|
|
if len(phi) > 3: |
|
phis = txt_interpolation(phi, frame, mode='smooth') |
|
phis[0] = phi[0] |
|
phis[-1] = phi[-1] |
|
else: |
|
phis = txt_interpolation(phi, frame, mode='linear') |
|
|
|
if len(theta) > 3: |
|
thetas = txt_interpolation(theta, frame, mode='smooth') |
|
thetas[0] = theta[0] |
|
thetas[-1] = theta[-1] |
|
else: |
|
thetas = txt_interpolation(theta, frame, mode='linear') |
|
|
|
if len(r) > 3: |
|
rs = txt_interpolation(r, frame, mode='smooth') |
|
rs[0] = r[0] |
|
rs[-1] = r[-1] |
|
else: |
|
rs = txt_interpolation(r, frame, mode='linear') |
|
|
|
|
|
c2ws_list = [] |
|
for th, ph, r in zip(thetas, phis, rs): |
|
c2w_new = sphere2pose( |
|
c2ws_anchor, np.float32(th), np.float32(ph), np.float32(r), device |
|
) |
|
c2ws_list.append(c2w_new) |
|
c2ws = torch.cat(c2ws_list, dim=0) |
|
return c2ws |
|
|
|
|
|
class Warper: |
|
def __init__(self, resolution: tuple = None, device: str = 'gpu0'): |
|
self.resolution = resolution |
|
self.device = self.get_device(device) |
|
self.dtype = torch.float32 |
|
return |
|
|
|
def forward_warp( |
|
self, |
|
frame1: torch.Tensor, |
|
mask1: Optional[torch.Tensor], |
|
depth1: torch.Tensor, |
|
transformation1: torch.Tensor, |
|
transformation2: torch.Tensor, |
|
intrinsic1: torch.Tensor, |
|
intrinsic2: Optional[torch.Tensor], |
|
mask=False, |
|
twice=False, |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: |
|
""" |
|
Given a frame1 and global transformations transformation1 and transformation2, warps frame1 to next view using |
|
bilinear splatting. |
|
All arrays should be torch tensors with batch dimension and channel first |
|
:param frame1: (b, 3, h, w). If frame1 is not in the range [-1, 1], either set is_image=False when calling |
|
bilinear_splatting on frame within this function, or modify clipping in bilinear_splatting() |
|
method accordingly. |
|
:param mask1: (b, 1, h, w) - 1 for known, 0 for unknown. Optional |
|
:param depth1: (b, 1, h, w) |
|
:param transformation1: (b, 4, 4) extrinsic transformation matrix of first view: [R, t; 0, 1] |
|
:param transformation2: (b, 4, 4) extrinsic transformation matrix of second view: [R, t; 0, 1] |
|
:param intrinsic1: (b, 3, 3) camera intrinsic matrix |
|
:param intrinsic2: (b, 3, 3) camera intrinsic matrix. Optional |
|
""" |
|
if self.resolution is not None: |
|
assert frame1.shape[2:4] == self.resolution |
|
b, c, h, w = frame1.shape |
|
if mask1 is None: |
|
mask1 = torch.ones(size=(b, 1, h, w)).to(frame1) |
|
if intrinsic2 is None: |
|
intrinsic2 = intrinsic1.clone() |
|
|
|
assert frame1.shape == (b, 3, h, w) |
|
assert mask1.shape == (b, 1, h, w) |
|
assert depth1.shape == (b, 1, h, w) |
|
assert transformation1.shape == (b, 4, 4) |
|
assert transformation2.shape == (b, 4, 4) |
|
assert intrinsic1.shape == (b, 3, 3) |
|
assert intrinsic2.shape == (b, 3, 3) |
|
|
|
frame1 = frame1.to(self.device).to(self.dtype) |
|
mask1 = mask1.to(self.device).to(self.dtype) |
|
depth1 = depth1.to(self.device).to(self.dtype) |
|
transformation1 = transformation1.to(self.device).to(self.dtype) |
|
transformation2 = transformation2.to(self.device).to(self.dtype) |
|
intrinsic1 = intrinsic1.to(self.device).to(self.dtype) |
|
intrinsic2 = intrinsic2.to(self.device).to(self.dtype) |
|
|
|
trans_points1 = self.compute_transformed_points( |
|
depth1, transformation1, transformation2, intrinsic1, intrinsic2 |
|
) |
|
trans_coordinates = ( |
|
trans_points1[:, :, :, :2, 0] / trans_points1[:, :, :, 2:3, 0] |
|
) |
|
trans_depth1 = trans_points1[:, :, :, 2, 0] |
|
grid = self.create_grid(b, h, w).to(trans_coordinates) |
|
flow12 = trans_coordinates.permute(0, 3, 1, 2) - grid |
|
if not twice: |
|
warped_frame2, mask2 = self.bilinear_splatting( |
|
frame1, mask1, trans_depth1, flow12, None, is_image=True |
|
) |
|
if mask: |
|
warped_frame2, mask2 = self.clean_points(warped_frame2, mask2) |
|
return warped_frame2, mask2, None, flow12 |
|
|
|
else: |
|
warped_frame2, mask2 = self.bilinear_splatting( |
|
frame1, mask1, trans_depth1, flow12, None, is_image=True |
|
) |
|
|
|
warped_flow, _ = self.bilinear_splatting( |
|
flow12, mask1, trans_depth1, flow12, None, is_image=False |
|
) |
|
twice_warped_frame1, _ = self.bilinear_splatting( |
|
warped_frame2, |
|
mask2, |
|
depth1.squeeze(1), |
|
-warped_flow, |
|
None, |
|
is_image=True, |
|
) |
|
return twice_warped_frame1, warped_frame2, None, None |
|
|
|
def compute_transformed_points( |
|
self, |
|
depth1: torch.Tensor, |
|
transformation1: torch.Tensor, |
|
transformation2: torch.Tensor, |
|
intrinsic1: torch.Tensor, |
|
intrinsic2: Optional[torch.Tensor], |
|
): |
|
""" |
|
Computes transformed position for each pixel location |
|
""" |
|
if self.resolution is not None: |
|
assert depth1.shape[2:4] == self.resolution |
|
b, _, h, w = depth1.shape |
|
if intrinsic2 is None: |
|
intrinsic2 = intrinsic1.clone() |
|
transformation = torch.bmm( |
|
transformation2, torch.linalg.inv(transformation1) |
|
) |
|
|
|
x1d = torch.arange(0, w)[None] |
|
y1d = torch.arange(0, h)[:, None] |
|
x2d = x1d.repeat([h, 1]).to(depth1) |
|
y2d = y1d.repeat([1, w]).to(depth1) |
|
ones_2d = torch.ones(size=(h, w)).to(depth1) |
|
ones_4d = ones_2d[None, :, :, None, None].repeat( |
|
[b, 1, 1, 1, 1] |
|
) |
|
pos_vectors_homo = torch.stack([x2d, y2d, ones_2d], dim=2)[ |
|
None, :, :, :, None |
|
] |
|
|
|
intrinsic1_inv = torch.linalg.inv(intrinsic1) |
|
intrinsic1_inv_4d = intrinsic1_inv[:, None, None] |
|
intrinsic2_4d = intrinsic2[:, None, None] |
|
depth_4d = depth1[:, 0][:, :, :, None, None] |
|
trans_4d = transformation[:, None, None] |
|
|
|
unnormalized_pos = torch.matmul( |
|
intrinsic1_inv_4d, pos_vectors_homo |
|
) |
|
world_points = depth_4d * unnormalized_pos |
|
world_points_homo = torch.cat([world_points, ones_4d], dim=3) |
|
trans_world_homo = torch.matmul(trans_4d, world_points_homo) |
|
trans_world = trans_world_homo[:, :, :, :3] |
|
trans_norm_points = torch.matmul(intrinsic2_4d, trans_world) |
|
return trans_norm_points |
|
|
|
def bilinear_splatting( |
|
self, |
|
frame1: torch.Tensor, |
|
mask1: Optional[torch.Tensor], |
|
depth1: torch.Tensor, |
|
flow12: torch.Tensor, |
|
flow12_mask: Optional[torch.Tensor], |
|
is_image: bool = False, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
""" |
|
Bilinear splatting |
|
:param frame1: (b,c,h,w) |
|
:param mask1: (b,1,h,w): 1 for known, 0 for unknown. Optional |
|
:param depth1: (b,1,h,w) |
|
:param flow12: (b,2,h,w) |
|
:param flow12_mask: (b,1,h,w): 1 for valid flow, 0 for invalid flow. Optional |
|
:param is_image: if true, output will be clipped to (-1,1) range |
|
:return: warped_frame2: (b,c,h,w) |
|
mask2: (b,1,h,w): 1 for known and 0 for unknown |
|
""" |
|
if self.resolution is not None: |
|
assert frame1.shape[2:4] == self.resolution |
|
b, c, h, w = frame1.shape |
|
if mask1 is None: |
|
mask1 = torch.ones(size=(b, 1, h, w)).to(frame1) |
|
if flow12_mask is None: |
|
flow12_mask = torch.ones(size=(b, 1, h, w)).to(flow12) |
|
grid = self.create_grid(b, h, w).to(frame1) |
|
trans_pos = flow12 + grid |
|
|
|
trans_pos_offset = trans_pos + 1 |
|
trans_pos_floor = torch.floor(trans_pos_offset).long() |
|
trans_pos_ceil = torch.ceil(trans_pos_offset).long() |
|
trans_pos_offset = torch.stack( |
|
[ |
|
torch.clamp(trans_pos_offset[:, 0], min=0, max=w + 1), |
|
torch.clamp(trans_pos_offset[:, 1], min=0, max=h + 1), |
|
], |
|
dim=1, |
|
) |
|
trans_pos_floor = torch.stack( |
|
[ |
|
torch.clamp(trans_pos_floor[:, 0], min=0, max=w + 1), |
|
torch.clamp(trans_pos_floor[:, 1], min=0, max=h + 1), |
|
], |
|
dim=1, |
|
) |
|
trans_pos_ceil = torch.stack( |
|
[ |
|
torch.clamp(trans_pos_ceil[:, 0], min=0, max=w + 1), |
|
torch.clamp(trans_pos_ceil[:, 1], min=0, max=h + 1), |
|
], |
|
dim=1, |
|
) |
|
|
|
prox_weight_nw = (1 - (trans_pos_offset[:, 1:2] - trans_pos_floor[:, 1:2])) * ( |
|
1 - (trans_pos_offset[:, 0:1] - trans_pos_floor[:, 0:1]) |
|
) |
|
prox_weight_sw = (1 - (trans_pos_ceil[:, 1:2] - trans_pos_offset[:, 1:2])) * ( |
|
1 - (trans_pos_offset[:, 0:1] - trans_pos_floor[:, 0:1]) |
|
) |
|
prox_weight_ne = (1 - (trans_pos_offset[:, 1:2] - trans_pos_floor[:, 1:2])) * ( |
|
1 - (trans_pos_ceil[:, 0:1] - trans_pos_offset[:, 0:1]) |
|
) |
|
prox_weight_se = (1 - (trans_pos_ceil[:, 1:2] - trans_pos_offset[:, 1:2])) * ( |
|
1 - (trans_pos_ceil[:, 0:1] - trans_pos_offset[:, 0:1]) |
|
) |
|
|
|
sat_depth1 = torch.clamp(depth1, min=0, max=1000) |
|
log_depth1 = torch.log(1 + sat_depth1) |
|
depth_weights = torch.exp(log_depth1 / log_depth1.max() * 50) |
|
|
|
weight_nw = torch.moveaxis( |
|
prox_weight_nw * mask1 * flow12_mask / depth_weights.unsqueeze(1), |
|
[0, 1, 2, 3], |
|
[0, 3, 1, 2], |
|
) |
|
weight_sw = torch.moveaxis( |
|
prox_weight_sw * mask1 * flow12_mask / depth_weights.unsqueeze(1), |
|
[0, 1, 2, 3], |
|
[0, 3, 1, 2], |
|
) |
|
weight_ne = torch.moveaxis( |
|
prox_weight_ne * mask1 * flow12_mask / depth_weights.unsqueeze(1), |
|
[0, 1, 2, 3], |
|
[0, 3, 1, 2], |
|
) |
|
weight_se = torch.moveaxis( |
|
prox_weight_se * mask1 * flow12_mask / depth_weights.unsqueeze(1), |
|
[0, 1, 2, 3], |
|
[0, 3, 1, 2], |
|
) |
|
|
|
warped_frame = torch.zeros(size=(b, h + 2, w + 2, c), dtype=torch.float32).to( |
|
frame1 |
|
) |
|
warped_weights = torch.zeros(size=(b, h + 2, w + 2, 1), dtype=torch.float32).to( |
|
frame1 |
|
) |
|
|
|
frame1_cl = torch.moveaxis(frame1, [0, 1, 2, 3], [0, 3, 1, 2]) |
|
batch_indices = torch.arange(b)[:, None, None].to(frame1.device) |
|
warped_frame.index_put_( |
|
(batch_indices, trans_pos_floor[:, 1], trans_pos_floor[:, 0]), |
|
frame1_cl * weight_nw, |
|
accumulate=True, |
|
) |
|
warped_frame.index_put_( |
|
(batch_indices, trans_pos_ceil[:, 1], trans_pos_floor[:, 0]), |
|
frame1_cl * weight_sw, |
|
accumulate=True, |
|
) |
|
warped_frame.index_put_( |
|
(batch_indices, trans_pos_floor[:, 1], trans_pos_ceil[:, 0]), |
|
frame1_cl * weight_ne, |
|
accumulate=True, |
|
) |
|
warped_frame.index_put_( |
|
(batch_indices, trans_pos_ceil[:, 1], trans_pos_ceil[:, 0]), |
|
frame1_cl * weight_se, |
|
accumulate=True, |
|
) |
|
|
|
warped_weights.index_put_( |
|
(batch_indices, trans_pos_floor[:, 1], trans_pos_floor[:, 0]), |
|
weight_nw, |
|
accumulate=True, |
|
) |
|
warped_weights.index_put_( |
|
(batch_indices, trans_pos_ceil[:, 1], trans_pos_floor[:, 0]), |
|
weight_sw, |
|
accumulate=True, |
|
) |
|
warped_weights.index_put_( |
|
(batch_indices, trans_pos_floor[:, 1], trans_pos_ceil[:, 0]), |
|
weight_ne, |
|
accumulate=True, |
|
) |
|
warped_weights.index_put_( |
|
(batch_indices, trans_pos_ceil[:, 1], trans_pos_ceil[:, 0]), |
|
weight_se, |
|
accumulate=True, |
|
) |
|
|
|
warped_frame_cf = torch.moveaxis(warped_frame, [0, 1, 2, 3], [0, 2, 3, 1]) |
|
warped_weights_cf = torch.moveaxis(warped_weights, [0, 1, 2, 3], [0, 2, 3, 1]) |
|
cropped_warped_frame = warped_frame_cf[:, :, 1:-1, 1:-1] |
|
cropped_weights = warped_weights_cf[:, :, 1:-1, 1:-1] |
|
|
|
mask = cropped_weights > 0 |
|
zero_value = -1 if is_image else 0 |
|
zero_tensor = torch.tensor(zero_value, dtype=frame1.dtype, device=frame1.device) |
|
warped_frame2 = torch.where( |
|
mask, cropped_warped_frame / cropped_weights, zero_tensor |
|
) |
|
mask2 = mask.to(frame1) |
|
|
|
if is_image: |
|
assert warped_frame2.min() >= -1.1 |
|
assert warped_frame2.max() <= 1.1 |
|
warped_frame2 = torch.clamp(warped_frame2, min=-1, max=1) |
|
return warped_frame2, mask2 |
|
|
|
def clean_points(self, warped_frame2, mask2): |
|
warped_frame2 = (warped_frame2 + 1.0) / 2.0 |
|
mask = 1 - mask2 |
|
mask[mask < 0.5] = 0 |
|
mask[mask >= 0.5] = 1 |
|
mask = mask.squeeze(0).repeat(3, 1, 1).permute(1, 2, 0) * 255.0 |
|
mask = mask.cpu().numpy() |
|
kernel = numpy.ones((5, 5), numpy.uint8) |
|
mask_erosion = cv2.dilate(numpy.array(mask), kernel, iterations=1) |
|
mask_erosion = PIL.Image.fromarray(numpy.uint8(mask_erosion)) |
|
mask_erosion_ = numpy.array(mask_erosion) / 255.0 |
|
mask_erosion_[mask_erosion_ < 0.5] = 0 |
|
mask_erosion_[mask_erosion_ >= 0.5] = 1 |
|
mask_new = ( |
|
torch.from_numpy(mask_erosion_) |
|
.permute(2, 0, 1) |
|
.unsqueeze(0) |
|
.to(self.device) |
|
) |
|
warped_frame2 = warped_frame2 * (1 - mask_new) |
|
return warped_frame2 * 2.0 - 1.0, 1 - mask_new[:, 0:1, :, :] |
|
|
|
@staticmethod |
|
def create_grid(b, h, w): |
|
x_1d = torch.arange(0, w)[None] |
|
y_1d = torch.arange(0, h)[:, None] |
|
x_2d = x_1d.repeat([h, 1]) |
|
y_2d = y_1d.repeat([1, w]) |
|
grid = torch.stack([x_2d, y_2d], dim=0) |
|
batch_grid = grid[None].repeat([b, 1, 1, 1]) |
|
return batch_grid |
|
|
|
@staticmethod |
|
def read_image(path: Path) -> torch.Tensor: |
|
image = skimage.io.imread(path.as_posix()) |
|
return image |
|
|
|
@staticmethod |
|
def read_depth(path: Path) -> torch.Tensor: |
|
if path.suffix == '.png': |
|
depth = skimage.io.imread(path.as_posix()) |
|
elif path.suffix == '.npy': |
|
depth = numpy.load(path.as_posix()) |
|
elif path.suffix == '.npz': |
|
with numpy.load(path.as_posix()) as depth_data: |
|
depth = depth_data['depth'] |
|
else: |
|
raise RuntimeError(f'Unknown depth format: {path.suffix}') |
|
return depth |
|
|
|
@staticmethod |
|
def camera_intrinsic_transform( |
|
capture_width=1920, capture_height=1080, patch_start_point: tuple = (0, 0) |
|
): |
|
start_y, start_x = patch_start_point |
|
camera_intrinsics = numpy.eye(4) |
|
camera_intrinsics[0, 0] = 2100 |
|
camera_intrinsics[0, 2] = capture_width / 2.0 - start_x |
|
camera_intrinsics[1, 1] = 2100 |
|
camera_intrinsics[1, 2] = capture_height / 2.0 - start_y |
|
return camera_intrinsics |
|
|
|
@staticmethod |
|
def get_device(device: str): |
|
""" |
|
Returns torch device object |
|
:param device: cpu/gpu0/gpu1 |
|
:return: |
|
""" |
|
if device == 'cpu': |
|
device = torch.device('cpu') |
|
elif device.startswith('gpu') and torch.cuda.is_available(): |
|
gpu_num = int(device[3:]) |
|
device = torch.device(f'cuda:{gpu_num}') |
|
else: |
|
device = torch.device('cpu') |
|
return device |
|
|