EPiC-fps / preprocess /get_masked_videos.py
roll-ai's picture
Upload 161 files
b14067d verified
import os
import cv2
import torch
import numpy as np
from tqdm import tqdm
from torchvision import transforms
import imageio
import argparse
import sys
sys.path.append("RAFT/core")
from raft import RAFT
from utils.utils import InputPadder
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
def load_raft_model(ckpt_path):
args = argparse.Namespace(
small=False,
mixed_precision=False,
alternate_corr=False,
dropout=0.0,
max_depth=8,
depth_network=False,
depth_residual=False,
depth_scale=1.0
)
model = torch.nn.DataParallel(RAFT(args))
model.load_state_dict(torch.load(ckpt_path, map_location=DEVICE))
return model.module.to(DEVICE).eval()
def run_masking(video_path, output_path, mask_path, raft):
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print(f"Failed to open video: {video_path}")
return
fps = cap.get(cv2.CAP_PROP_FPS)
n_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
ok, first = cap.read()
if not ok:
print(f"Failed to read first frame in {video_path}")
return
resize_to = (720, 480)
first = cv2.resize(first, resize_to)
H, W, _ = first.shape
area_thresh = (H * W) // 6
grid = np.stack(np.meshgrid(np.arange(W), np.arange(H)), -1).astype(np.float32)
pos = grid.copy()
vis = np.ones((H, W), dtype=bool)
writer = imageio.get_writer(output_path, fps=int(fps))
prev = first.copy()
frames_since_corr = 0
freeze_mask = False
frozen_mask = None
all_masks = []
writer.append_data(first[:, :, ::-1])
all_masks.append(np.ones((H, W), dtype=bool))
def to_tensor(bgr):
return transforms.ToTensor()(bgr).unsqueeze(0).to(DEVICE)
def raft_flow(img1_bgr, img2_bgr):
t1, t2 = to_tensor(img1_bgr), to_tensor(img2_bgr)
padder = InputPadder(t1.shape)
i1, i2 = padder.pad(t1, t2)
with torch.no_grad():
_, flow = raft(i1, i2, iters=20, test_mode=True)
return padder.unpad(flow)[0].permute(1, 2, 0).cpu().numpy()
for _ in range(1, n_frames):
ok, cur = cap.read()
if not ok:
break
cur = cv2.resize(cur, resize_to)
if not freeze_mask:
flow_fw = raft_flow(prev, cur)
pos += flow_fw
frames_since_corr += 1
x_ok = (0 <= pos[..., 0]) & (pos[..., 0] < W)
y_ok = (0 <= pos[..., 1]) & (pos[..., 1] < H)
vis &= x_ok & y_ok
m = np.zeros((H, W), np.uint8)
ys, xs = np.where(vis)
px = np.round(pos[ys, xs, 0]).astype(int)
py = np.round(pos[ys, xs, 1]).astype(int)
inb = (0 <= px) & (px < W) & (0 <= py) & (py < H)
m[py[inb], px[inb]] = 1
m = cv2.dilate(m, np.ones((2, 2), np.uint8))
visible_ratio = m.sum() / (H * W)
if visible_ratio < 0.3:
flow_0t = raft_flow(first, cur)
pos = grid + flow_0t
vis = np.ones((H, W), dtype=bool)
x_ok = (0 <= pos[..., 0]) & (pos[..., 0] < W)
y_ok = (0 <= pos[..., 1]) & (pos[..., 1] < H)
vis &= x_ok & y_ok
m.fill(0)
ys, xs = np.where(vis)
px = np.round(pos[ys, xs, 0]).astype(int)
py = np.round(pos[ys, xs, 1]).astype(int)
inb = (0 <= px) & (px < W) & (0 <= py) & (py < H)
m[py[inb], px[inb]] = 1
m = cv2.dilate(m, np.ones((2, 2), np.uint8))
if m.sum() < area_thresh:
freeze_mask = True
frozen_mask = m.copy()
frames_since_corr = 0
else:
m = frozen_mask
effective_mask = m.astype(bool)
all_masks.append(effective_mask)
out = cur.copy()
out[~effective_mask] = 0
writer.append_data(out[:, :, ::-1])
prev = cur if not freeze_mask else prev
writer.close()
cap.release()
all_masks_array = np.stack(all_masks, axis=0)
np.savez_compressed(mask_path, mask=all_masks_array)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--video_path", type=str, required=True)
parser.add_argument("--output_path", type=str, required=True)
parser.add_argument("--mask_path", type=str, required=True)
parser.add_argument("--raft_ckpt", type=str, required=True)
parser.add_argument("--start_idx", type=int, required=True)
parser.add_argument("--end_idx", type=int, required=True)
parser.add_argument("--gpu_id", type=int, required=True)
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu_id)
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
os.makedirs(args.output_path, exist_ok=True)
os.makedirs(args.mask_path, exist_ok=True)
video_list = sorted([
f for f in os.listdir(args.video_path)
if f.endswith(".mp4")
])
selected_videos = video_list[args.start_idx : args.end_idx]
print(f"[GPU {args.gpu_id}] Processing {len(selected_videos)} videos: {args.start_idx} to {args.end_idx}")
model = load_raft_model(args.raft_ckpt)
for fname in tqdm(selected_videos, desc="Batch Processing"):
input_path = os.path.join(args.video_path, fname)
mask_path = os.path.join(args.mask_path, fname.replace(".mp4", ".npz"))
output_path = os.path.join(args.output_path, fname)
if os.path.exists(mask_path):
try:
np.load(mask_path)["mask"]
continue
except:
print(f"⚠️ Mask corrupt or unreadable: {mask_path} - Regenerating")
if os.path.exists(output_path):
continue
run_masking(input_path, output_path, mask_path, model)