Muhammad Taqi Raza
commited on
Commit
·
fa72d99
1
Parent(s):
49304f4
push
Browse files- gradio_app.py +59 -27
gradio_app.py
CHANGED
@@ -38,58 +38,90 @@ download_models()
|
|
38 |
# -----------------------------
|
39 |
# Step 2: Inference Logic
|
40 |
# -----------------------------
|
|
|
41 |
def run_epic_inference(video_path, caption, motion_type):
|
42 |
temp_input_path = "/app/temp_input.mp4"
|
43 |
-
output_dir = f"/app/
|
44 |
-
|
45 |
-
video_output_path = f"{output_dir}/masked_videos/temp_input.mp4"
|
46 |
traj_name = motion_type
|
47 |
traj_txt = f"/app/inference/v2v_data/test/trajs/{traj_name}.txt"
|
48 |
-
|
49 |
# Save uploaded video
|
50 |
if video_path:
|
51 |
os.system(f"cp '{video_path}' {temp_input_path}")
|
52 |
-
|
53 |
command = [
|
54 |
-
"python",
|
55 |
-
"
|
56 |
-
"--
|
57 |
-
|
58 |
-
"--
|
59 |
-
"
|
60 |
-
"--
|
61 |
-
output_dir,
|
62 |
-
"--radius_scale",
|
63 |
-
"1",
|
64 |
-
"--camera",
|
65 |
-
"traj",
|
66 |
-
"--mask",
|
67 |
"--target_pose", "0", "30", "-0.6", "0", "0",
|
68 |
-
"--traj_txt",
|
69 |
-
|
70 |
-
"--
|
71 |
-
f"temp_input",
|
72 |
-
"--mode",
|
73 |
-
"gradual",
|
74 |
-
"--out_dir",
|
75 |
-
output_dir,
|
76 |
]
|
77 |
|
78 |
# Run inference command
|
79 |
try:
|
|
|
80 |
result = subprocess.run(command, capture_output=True, text=True, check=True)
|
|
|
81 |
logs = result.stdout
|
82 |
except subprocess.CalledProcessError as e:
|
83 |
logs = f"❌ Inference failed:\n{e.stderr}"
|
84 |
return logs, None
|
85 |
|
86 |
# Locate the output video
|
87 |
-
output_video = Path(output_dir) / f"amalfi-coast_traj_{traj_name}.mp4"
|
88 |
if video_output_path:
|
89 |
return logs, str(video_output_path)
|
90 |
else:
|
91 |
return f"Inference succeeded but no output video found in {output_dir}", None
|
92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
# -----------------------------
|
95 |
# Step 3: Create Gradio UI
|
|
|
38 |
# -----------------------------
|
39 |
# Step 2: Inference Logic
|
40 |
# -----------------------------
|
41 |
+
|
42 |
def run_epic_inference(video_path, caption, motion_type):
|
43 |
temp_input_path = "/app/temp_input.mp4"
|
44 |
+
output_dir = f"/app/output_anchor"
|
45 |
+
video_output_path = f"{output_dir}/videos/output.mp4"
|
|
|
46 |
traj_name = motion_type
|
47 |
traj_txt = f"/app/inference/v2v_data/test/trajs/{traj_name}.txt"
|
|
|
48 |
# Save uploaded video
|
49 |
if video_path:
|
50 |
os.system(f"cp '{video_path}' {temp_input_path}")
|
51 |
+
|
52 |
command = [
|
53 |
+
"python", "/app/inference/v2v_data/inference.py",
|
54 |
+
"--video_path", temp_input_path,
|
55 |
+
"--stride", "1",
|
56 |
+
"--out_dir", output_dir,
|
57 |
+
"--radius_scale", "1",
|
58 |
+
"--camera", "traj",
|
59 |
+
"--mask",
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
"--target_pose", "0", "30", "-0.6", "0", "0",
|
61 |
+
"--traj_txt", traj_txt,
|
62 |
+
"--save_name", "output",
|
63 |
+
"--mode", "gradual",
|
|
|
|
|
|
|
|
|
|
|
64 |
]
|
65 |
|
66 |
# Run inference command
|
67 |
try:
|
68 |
+
|
69 |
result = subprocess.run(command, capture_output=True, text=True, check=True)
|
70 |
+
print("Getting Anchor Videos run successfully.")
|
71 |
logs = result.stdout
|
72 |
except subprocess.CalledProcessError as e:
|
73 |
logs = f"❌ Inference failed:\n{e.stderr}"
|
74 |
return logs, None
|
75 |
|
76 |
# Locate the output video
|
|
|
77 |
if video_output_path:
|
78 |
return logs, str(video_output_path)
|
79 |
else:
|
80 |
return f"Inference succeeded but no output video found in {output_dir}", None
|
81 |
|
82 |
+
def inference(video_path, caption, motion_type):
|
83 |
+
|
84 |
+
MODEL_PATH="/app/pretrained/CogVideoX-5b-I2V"
|
85 |
+
|
86 |
+
ckpt_steps=500
|
87 |
+
ckpt_dir="/app/out/EPiC_pretrained"
|
88 |
+
ckpt_file=f"checkpoint-{ckpt_steps}.pt"
|
89 |
+
ckpt_path=f"{ckpt_dir}/{ckpt_file}"
|
90 |
+
|
91 |
+
video_root_dir= f"/app/output_anchor"
|
92 |
+
out_dir=f"/app/output"
|
93 |
+
|
94 |
+
command = [
|
95 |
+
"python", "/app/inference/cli_demo_camera_i2v_pcd.py",
|
96 |
+
"--video_root_dir", video_root_dir,
|
97 |
+
"--base_model_path", MODEL_PATH,
|
98 |
+
"--controlnet_model_path", ckpt_path,
|
99 |
+
"--output_path", out_dir,
|
100 |
+
"--start_camera_idx", "0",
|
101 |
+
"--end_camera_idx", "8",
|
102 |
+
"--controlnet_weights", "1.0",
|
103 |
+
"--controlnet_guidance_start", "0.0",
|
104 |
+
"--controlnet_guidance_end", "0.4",
|
105 |
+
"--controlnet_input_channels", "3",
|
106 |
+
"--controlnet_transformer_num_attn_heads", "4",
|
107 |
+
"--controlnet_transformer_attention_head_dim", "64",
|
108 |
+
"--controlnet_transformer_out_proj_dim_factor", "64",
|
109 |
+
"--controlnet_transformer_out_proj_dim_zero_init",
|
110 |
+
"--vae_channels", "16",
|
111 |
+
"--num_frames", "49",
|
112 |
+
"--controlnet_transformer_num_layers", "8",
|
113 |
+
"--infer_with_mask",
|
114 |
+
"--pool_style", "max",
|
115 |
+
"--seed", "43"
|
116 |
+
]
|
117 |
+
|
118 |
+
# Run the command
|
119 |
+
result = subprocess.run(command, capture_output=True, text=True)
|
120 |
+
if result.returncode == 0:
|
121 |
+
print("Inference completed successfully.")
|
122 |
+
else:
|
123 |
+
print(f"Error occurred during inference: {result.stderr}")
|
124 |
+
|
125 |
|
126 |
# -----------------------------
|
127 |
# Step 3: Create Gradio UI
|