FloVD / finetune /modules /cogvideox_controlnet.py
roll-ai's picture
Upload 185 files
4e7b4da verified
raw
history blame
15.6 kB
from typing import Any, Dict, Optional, Tuple, Union
import torch
from torch import nn
from einops import rearrange
import torch.nn.functional as F
from diffusers.configuration_utils import FrozenDict
from diffusers import CogVideoXTransformer3DModel
from diffusers.models.transformers.cogvideox_transformer_3d import Transformer2DModelOutput, CogVideoXBlock
from diffusers.utils import is_torch_version
from diffusers.loaders import PeftAdapterMixin
from diffusers.utils.torch_utils import maybe_allow_in_graph
from diffusers.models.embeddings import CogVideoXPatchEmbed, TimestepEmbedding, Timesteps, get_3d_sincos_pos_embed
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.attention import Attention, FeedForward
from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor2_0
from diffusers.models.normalization import AdaLayerNorm, CogVideoXLayerNormZero, AdaLayerNormZeroSingle
from diffusers.configuration_utils import ConfigMixin, register_to_config
from .cogvideox_custom_modules import CustomCogVideoXPatchEmbed, CustomCogVideoXBlock
import pdb
class CogVideoXControlnet(ModelMixin, ConfigMixin, PeftAdapterMixin):
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
num_attention_heads: int = 30, # 48 for 5B, 30 for 2B.
attention_head_dim: int = 64,
# in_channels: int = 3,
in_channels: int = 16,
out_channels: Optional[int] = 16, # Not used
flip_sin_to_cos: bool = True,
freq_shift: int = 0,
time_embed_dim: int = 512,
ofs_embed_dim: Optional[int] = None,
text_embed_dim: int = 4096,
num_layers: int = 30,
dropout: float = 0.0,
attention_bias: bool = True,
sample_width: int = 90,
sample_height: int = 60,
sample_frames: int = 49,
patch_size: int = 2,
patch_size_t: Optional[int] = None,
temporal_compression_ratio: int = 4,
max_text_seq_length: int = 226,
activation_fn: str = "gelu-approximate",
timestep_activation_fn: str = "silu",
norm_elementwise_affine: bool = True,
norm_eps: float = 1e-5,
spatial_interpolation_scale: float = 1.875,
temporal_interpolation_scale: float = 1.0,
use_rotary_positional_embeddings: bool = False,
use_learned_positional_embeddings: bool = False,
patch_bias: bool = True,
out_proj_dim_factor: int = 8,
out_proj_dim_zero_init: bool = True,
notextinflow: bool = False,
):
super().__init__()
inner_dim = num_attention_heads * attention_head_dim
self.notextinflow = notextinflow
if not use_rotary_positional_embeddings and use_learned_positional_embeddings:
raise ValueError(
"There are no CogVideoX checkpoints available with disable rotary embeddings and learned positional "
"embeddings. If you're using a custom model and/or believe this should be supported, please open an "
"issue at https://github.com/huggingface/diffusers/issues."
)
"""
Delete below.
In our case, FloVD, controlnet_hidden_states is already flow_latents encoded by 3D-Causal-VAE
"""
# start_channels = in_channels * (downscale_coef ** 2)
# input_channels = [start_channels, start_channels // 2, start_channels // 4]
# self.unshuffle = nn.PixelUnshuffle(downscale_coef)
# self.controlnet_encode_first = nn.Sequential(
# nn.Conv2d(input_channels[0], input_channels[1], kernel_size=1, stride=1, padding=0),
# nn.GroupNorm(2, input_channels[1]),
# nn.ReLU(),
# )
# self.controlnet_encode_second = nn.Sequential(
# nn.Conv2d(input_channels[1], input_channels[2], kernel_size=1, stride=1, padding=0),
# nn.GroupNorm(2, input_channels[2]),
# nn.ReLU(),
# )
# """
# Modify below.
# In our case, patch_embed takes encoder_hidden_states, hidden_states, controlnet_hidden_states (flow)
# """
# 1. Patch embedding
self.patch_embed = CogVideoXPatchEmbed(
patch_size=patch_size,
in_channels=in_channels,
embed_dim=inner_dim,
bias=True,
sample_width=sample_width,
sample_height=sample_height,
sample_frames=sample_frames,
temporal_compression_ratio=temporal_compression_ratio,
spatial_interpolation_scale=spatial_interpolation_scale,
temporal_interpolation_scale=temporal_interpolation_scale,
use_positional_embeddings=not use_rotary_positional_embeddings,
use_learned_positional_embeddings=use_learned_positional_embeddings,
)
# self.patch_embed = CustomCogVideoXPatchEmbed(
# patch_size=patch_size,
# patch_size_t=patch_size_t,
# in_channels=in_channels,
# embed_dim=inner_dim,
# text_embed_dim=text_embed_dim,
# bias=patch_bias,
# sample_width=sample_width,
# sample_height=sample_height,
# sample_frames=sample_frames,
# temporal_compression_ratio=temporal_compression_ratio,
# max_text_seq_length=max_text_seq_length,
# spatial_interpolation_scale=spatial_interpolation_scale,
# temporal_interpolation_scale=temporal_interpolation_scale,
# use_positional_embeddings=not use_rotary_positional_embeddings,
# use_learned_positional_embeddings=use_learned_positional_embeddings,
# )
self.embedding_dropout = nn.Dropout(dropout)
# 2. Time embeddings
self.time_proj = Timesteps(inner_dim, flip_sin_to_cos, freq_shift)
self.time_embedding = TimestepEmbedding(inner_dim, time_embed_dim, timestep_activation_fn)
# 3. Define spatio-temporal transformers blocks
# self.transformer_blocks = nn.ModuleList(
# [
# CogVideoXBlock(
# dim=inner_dim,
# num_attention_heads=num_attention_heads,
# attention_head_dim=attention_head_dim,
# time_embed_dim=time_embed_dim,
# dropout=dropout,
# activation_fn=activation_fn,
# attention_bias=attention_bias,
# norm_elementwise_affine=norm_elementwise_affine,
# norm_eps=norm_eps,
# )
# for _ in range(num_layers)
# ]
# )
self.transformer_blocks = nn.ModuleList(
[
CustomCogVideoXBlock(
dim=inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
time_embed_dim=time_embed_dim,
dropout=dropout,
activation_fn=activation_fn,
attention_bias=attention_bias,
norm_elementwise_affine=norm_elementwise_affine,
norm_eps=norm_eps,
)
for _ in range(num_layers)
]
)
self.out_projectors = None
if out_proj_dim_factor is not None:
out_proj_dim = num_attention_heads * out_proj_dim_factor
self.out_projectors = nn.ModuleList(
[nn.Linear(inner_dim, out_proj_dim) for _ in range(num_layers)]
)
if out_proj_dim_zero_init:
for out_projector in self.out_projectors:
self.zeros_init_linear(out_projector)
self.gradient_checkpointing = False
def zeros_init_linear(self, linear: nn.Module):
if isinstance(linear, (nn.Linear, nn.Conv1d)):
if hasattr(linear, "weight"):
nn.init.zeros_(linear.weight)
if hasattr(linear, "bias"):
nn.init.zeros_(linear.bias)
def _set_gradient_checkpointing(self, module, value=False):
self.gradient_checkpointing = value
def compress_time(self, x, num_frames):
x = rearrange(x, '(b f) c h w -> b f c h w', f=num_frames)
batch_size, frames, channels, height, width = x.shape
x = rearrange(x, 'b f c h w -> (b h w) c f')
if x.shape[-1] % 2 == 1:
x_first, x_rest = x[..., 0], x[..., 1:]
if x_rest.shape[-1] > 0:
x_rest = F.avg_pool1d(x_rest, kernel_size=2, stride=2)
x = torch.cat([x_first[..., None], x_rest], dim=-1)
else:
x = F.avg_pool1d(x, kernel_size=2, stride=2)
x = rearrange(x, '(b h w) c f -> (b f) c h w', b=batch_size, h=height, w=width)
return x
# """
# Add below.
# Load pre-trained weight from Diffusers
# For patch_embed, copy a projection layer for controlnet_states
# """
@classmethod
def from_pretrained(cls, model_path, subfolder, **additional_kwargs):
base = CogVideoXTransformer3DModel.from_pretrained(model_path, subfolder=subfolder)
controlnet_config = FrozenDict({**base.config, **additional_kwargs})
model = cls(**controlnet_config)
missing, unexpected = model.load_state_dict(base.state_dict(), strict=False)
print(f"Load CogVideoXTransformer3DModel.")
# if len(missing) != 0 or len(unexpected) != 0:
# print(f"Missing keys: {missing}")
# print(f"Unexpected keys: {unexpected}")
del base
torch.cuda.empty_cache()
return model
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
controlnet_hidden_states: torch.Tensor,
timestep: Union[int, float, torch.LongTensor],
controlnet_valid_mask: torch.Tensor = None,
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
timestep_cond: Optional[torch.Tensor] = None,
return_dict: bool = True,
):
"""
Delete below.
In our case, FloVD, controlnet_hidden_states is already flow_latents encoded by 3D-Causal-VAE
"""
# batch_size, num_frames, channels, height, width = controlnet_states.shape
# # 0. Controlnet encoder
# controlnet_states = rearrange(controlnet_states, 'b f c h w -> (b f) c h w')
# controlnet_states = self.unshuffle(controlnet_states)
# controlnet_states = self.controlnet_encode_first(controlnet_states)
# controlnet_states = self.compress_time(controlnet_states, num_frames=num_frames)
# num_frames = controlnet_states.shape[0] // batch_size
# controlnet_states = self.controlnet_encode_second(controlnet_states)
# controlnet_states = self.compress_time(controlnet_states, num_frames=num_frames)
# controlnet_states = rearrange(controlnet_states, '(b f) c h w -> b f c h w', b=batch_size)
batch_size, num_frames, channels, height, width = hidden_states.shape
# """
# Modify below.
# Distinguish hidden_states and controlnet_states (i.e., flow_hidden_states)
# """
hidden_states = torch.cat([hidden_states, controlnet_hidden_states], dim=2) # instead of image_latents, we use flow_latents for condition.
# controlnet_states = self.controlnext_encoder(controlnet_states, timestep=timestep)
# 1. Time embedding
timesteps = timestep
t_emb = self.time_proj(timesteps)
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might actually be running in fp16. so we need to cast here.
# there might be better ways to encapsulate this.
t_emb = t_emb.to(dtype=hidden_states.dtype)
emb = self.time_embedding(t_emb, timestep_cond)
# """
# Modify below.
# patch_embed takes encoder, hidden_states, controlnet_hidden_states
# """
hidden_states = self.patch_embed(encoder_hidden_states, hidden_states)
# hidden_states = self.patch_embed(encoder_hidden_states, hidden_states, controlnet_hidden_states) # output: [text_embeds, image_embeds, flow_embeds] [B, 35326, 3072]
hidden_states = self.embedding_dropout(hidden_states)
"""
Not modified below.
hidden_states include both hidden_states and controlnet_hidden_states
"""
text_seq_length = encoder_hidden_states.shape[1]
encoder_hidden_states = hidden_states[:, :text_seq_length] # [text_embeds] [B, 226, 3072]
hidden_states = hidden_states[:, text_seq_length:] # [image_embeds, flow_embeds] [B, 35100, 3072]
# attention mask
if controlnet_valid_mask is not None:
mask_shape = controlnet_valid_mask.shape
attention_mask = torch.nn.functional.interpolate(controlnet_valid_mask, size=(mask_shape[2], mask_shape[3]//2, mask_shape[4]//2), mode='trilinear', align_corners=False) # CFHW
attention_mask[attention_mask>=0.5] = 1
attention_mask[attention_mask<0.5] = 0
attention_mask = attention_mask.to(torch.bool)
attention_mask = rearrange(attention_mask.squeeze(1), 'b f h w -> b (f h w)') # (B, N=(fxhxw))
# Consider encoder_hidden_states.. or do not use?? not sure..
if not self.notextinflow:
attention_mask = F.pad(attention_mask, (text_seq_length, 0), value=0.0)
attention_kwargs = {
'attention_mask': attention_mask if controlnet_valid_mask is not None else None,
'notextinflow': self.notextinflow,
}
controlnet_hidden_states = ()
# 3. Transformer blocks
for i, block in enumerate(self.transformer_blocks):
if self.training and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
encoder_hidden_states,
emb,
image_rotary_emb,
attention_kwargs,
**ckpt_kwargs,
)
else:
hidden_states, encoder_hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
temb=emb,
image_rotary_emb=image_rotary_emb,
attention_kwargs=attention_kwargs,
)
if self.out_projectors is not None:
controlnet_hidden_states += (self.out_projectors[i](hidden_states),)
else:
controlnet_hidden_states += (hidden_states,)
if not return_dict:
return (controlnet_hidden_states,)
return Transformer2DModelOutput(sample=controlnet_hidden_states)