FloVD / app.py
roll-ai's picture
Update app.py
7fcd0f6 verified
raw
history blame
4.98 kB
import os
import gradio as gr
import torch
from PIL import Image
from pathlib import Path
import io
import sys
import traceback
from huggingface_hub import hf_hub_download
# =========================================
# 1. Define Hugging Face dataset + weights
# =========================================
HF_DATASET_REPO = "roll-ai/FloVD-weights" # your dataset repo on HF
WEIGHT_FILES = {
"ckpt/FVSM/FloVD_FVSM_Controlnet.pt": "FVSM/FloVD_FVSM_Controlet.pt",
"ckpt/OMSM/selected_blocks.safetensors": "OMSM/selected_blocks.safetensors",
"ckpt/OMSM/pytorch_lora_weights.safetensors": "OMSM/pytorch_lora_weights.safetensors",
"ckpt/others/depth_anything_v2_metric_hypersim_vitb.pth": "others/depth_anything_v2_metric_hypersim_vitb.pth"
}
print("")
print("Downloading model...", flush=True)
def download_weights():
print("πŸ”„ Downloading model weights via huggingface_hub...")
for hf_path, local_rel_path in WEIGHT_FILES.items():
local_path = Path("ckpt") / local_rel_path
if not local_path.exists():
print(f"πŸ“₯ Downloading {hf_path}")
hf_hub_download(
repo_id=HF_DATASET_REPO,
repo_type="dataset",
filename=hf_path,
local_dir="./"
)
else:
print(f"βœ… Already exists: {local_path}")
download_weights()
def print_ckpt_structure(base_path="ckpt"):
print(f"πŸ“‚ Listing structure of: {base_path}", flush=True)
for root, dirs, files in os.walk(base_path):
level = root.replace(base_path, '').count(os.sep)
indent = ' ' * 2 * level
print(f"{indent}πŸ“ {os.path.basename(root)}/", flush=True)
sub_indent = ' ' * 2 * (level + 1)
for f in files:
print(f"{sub_indent}πŸ“„ {f}", flush=True)
# Call it
print_ckpt_structure()
# =========================================
# 2. Import the FloVD generation pipeline
# =========================================
from inference.flovd_demo import generate_video
def run_inference(prompt, image, pose_type, speed, use_flow_integration, cam_pose_name):
log_buffer = io.StringIO()
sys_stdout = sys.stdout
sys.stdout = log_buffer
video_path = None
try:
print("πŸš€ Starting inference...", flush=True)
os.makedirs("input_images", exist_ok=True)
image_path = "input_images/input_image.png"
image.save(image_path)
print(f"πŸ“Έ Saved input image to {image_path}", flush=True)
generate_video(
prompt=prompt,
image_path=image_path,
fvsm_path="./ckpt/FVSM/FloVD_FVSM_Controlnet.pt",
omsm_path="./ckpt/OMSM",
output_path="./outputs",
num_frames=49,
fps=16,
width=None,
height=None,
seed=42,
guidance_scale=6.0,
dtype=torch.float16,
controlnet_guidance_end=0.4,
use_dynamic_cfg=False,
pose_type=pose_type,
speed=float(speed),
use_flow_integration=use_flow_integration,
cam_pose_name=cam_pose_name,
depth_ckpt_path="./ckpt/others/depth_anything_v2_metric_hypersim_vitb.pth"
)
video_name = f"{prompt[:30].strip().replace(' ', '_')}_{cam_pose_name or 'default'}.mp4"
video_path = f"./outputs/generated_videos/{video_name}"
print(f"βœ… Inference complete. Video saved to {video_path}")
except Exception:
print("πŸ”₯ Inference failed with exception:")
traceback.print_exc()
sys.stdout = sys_stdout
logs = log_buffer.getvalue()
log_buffer.close()
return (video_path if video_path and os.path.exists(video_path) else None), logs
# =========================================
# 3. Gradio App Interface
# =========================================
demo = gr.Interface(
fn=run_inference,
inputs=[
gr.Textbox(label="Prompt", value="A girl riding a bicycle through a park."),
gr.Image(type="pil", label="Input Image"),
gr.Radio(choices=["manual", "re10k"], value="manual", label="Camera Pose Type"),
gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=0.5, label="Camera Speed"),
gr.Checkbox(label="Use Flow Integration", value=False),
gr.Dropdown(
choices=["zoom_in", "zoom_out", "tilt_up", "tilt_down", "circle", ""],
label="Camera Trajectory",
value="zoom_in",
allow_custom_value=True
)
],
outputs=[
gr.Video(label="Generated Video"),
gr.Textbox(label="Logs", lines=20, interactive=False),
],
title="πŸŽ₯ FloVD: Optical Flow + CogVideoX Video Generation",
description="Upload an image and prompt to generate motion-controlled video using FloVD and CogVideoX."
)
# -----------------------------
# Launch the App
# -----------------------------
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860)