roll-ai's picture
Upload 185 files
4e7b4da verified
raw
history blame
14 kB
import argparse
import datetime
import logging
from pathlib import Path
from typing import Any, List, Literal, Tuple
from pydantic import BaseModel, ValidationInfo, field_validator
class Args(BaseModel):
########## Model ##########
model_path: Path
model_name: str
model_type: Literal["i2v", "t2v", "i2vFlow"] # i2vFlow for FloVD
training_type: Literal["lora", "sft", "controlnet"] = "lora"
additional_save_blocks: List[str] | None = None
depth_ckpt_path: str
########## Output ##########
output_dir: Path = Path("train_results/{:%Y-%m-%d-%H-%M-%S}".format(datetime.datetime.now()))
report_to: Literal["tensorboard", "wandb", "all"] | None = None
tracker_name: str = "finetrainer-cogvideo"
run_name: str = "CogVideoX"
########## Data ###########
data_root: Path
caption_column: Path
image_column: Path | None = None
video_column: Path
########## Training #########
resume_from_checkpoint: Path | None = None
seed: int | None = None
train_epochs: int
train_steps: int | None = None
checkpointing_steps: int = 200
checkpointing_limit: int = 10
batch_size: int
gradient_accumulation_steps: int = 1
train_resolution: Tuple[int, int, int] # shape: (frames, height, width)
#### deprecated args: video_resolution_buckets
# if use bucket for training, should not be None
# Note1: At least one frame rate in the bucket must be less than or equal to the frame rate of any video in the dataset
# Note2: For cogvideox, cogvideox1.5
# The frame rate set in the bucket must be an integer multiple of 8 (spatial_compression_rate[4] * path_t[2] = 8)
# The height and width set in the bucket must be an integer multiple of 8 (temporal_compression_rate[8])
# video_resolution_buckets: List[Tuple[int, int, int]] | None = None
mixed_precision: Literal["no", "fp16", "bf16"]
learning_rate: float = 2e-5
optimizer: str = "adamw"
beta1: float = 0.9
beta2: float = 0.95
beta3: float = 0.98
epsilon: float = 1e-8
weight_decay: float = 1e-4
max_grad_norm: float = 1.0
lr_scheduler: str = "constant_with_warmup"
lr_warmup_steps: int = 100
lr_num_cycles: int = 1
lr_power: float = 1.0
num_workers: int = 8
pin_memory: bool = True
gradient_checkpointing: bool = True
enable_slicing: bool = True
enable_tiling: bool = True
nccl_timeout: int = 1800
########## Lora ##########
rank: int = 128
lora_alpha: int = 64
target_modules: List[str] = ["to_q", "to_k", "to_v", "to_out.0"]
########## Validation ##########
do_validation: bool = False
validation_steps: int | None # if set, should be a multiple of checkpointing_steps
validation_dir: Path | None # if set do_validation, should not be None
validation_prompts: str | None # if set do_validation, should not be None
validation_images: str | None # if set do_validation and model_type == i2v, should not be None
validation_videos: str | None # if set do_validation and model_type == v2v, should not be None
gen_fps: int = 15
max_scene: int = 8
########## Controlnet ##########
controlnet_transformer_num_layers: int = 8
controlnet_input_channels: int = 16
controlnet_weights: float = 1.0
controlnet_guidance_start: float = 0.0
controlnet_guidance_end: float = 1.0
controlnet_out_proj_dim_factor: int = 64
controlnet_out_proj_zero_init: bool = True
enable_time_sampling: bool = True
time_sampling_type: str = 'truncated_normal'
time_sampling_mean: float = 0.95
time_sampling_std: float = 0.1
use_valid_mask: bool = False
notextinflow: bool = False
#### deprecated args: gen_video_resolution
# 1. If set do_validation, should not be None
# 2. Suggest selecting the bucket from `video_resolution_buckets` that is closest to the resolution you have chosen for fine-tuning
# or the resolution recommended by the model
# 3. Note: For cogvideox, cogvideox1.5
# The frame rate set in the bucket must be an integer multiple of 8 (spatial_compression_rate[4] * path_t[2] = 8)
# The height and width set in the bucket must be an integer multiple of 8 (temporal_compression_rate[8])
# gen_video_resolution: Tuple[int, int, int] | None # shape: (frames, height, width)
@field_validator("image_column")
def validate_image_column(cls, v: str | None, info: ValidationInfo) -> str | None:
values = info.data
if values.get("model_type") == "i2v" and not v:
logging.warning(
"No `image_column` specified for i2v model. Will automatically extract first frames from videos as conditioning images."
)
return v
@field_validator("validation_dir", "validation_prompts")
def validate_validation_required_fields(cls, v: Any, info: ValidationInfo) -> Any:
values = info.data
if values.get("do_validation") and not v:
field_name = info.field_name
raise ValueError(f"{field_name} must be specified when do_validation is True")
return v
@field_validator("validation_images")
def validate_validation_images(cls, v: str | None, info: ValidationInfo) -> str | None:
values = info.data
if values.get("do_validation") and values.get("model_type") == "i2v" and not v:
raise ValueError("validation_images must be specified when do_validation is True and model_type is i2v")
return v
@field_validator("validation_videos")
def validate_validation_videos(cls, v: str | None, info: ValidationInfo) -> str | None:
values = info.data
if values.get("do_validation") and values.get("model_type") == "v2v" and not v:
raise ValueError("validation_videos must be specified when do_validation is True and model_type is v2v")
return v
@field_validator("validation_steps")
def validate_validation_steps(cls, v: int | None, info: ValidationInfo) -> int | None:
values = info.data
if values.get("do_validation"):
if v is None:
raise ValueError("validation_steps must be specified when do_validation is True")
if values.get("checkpointing_steps") and v % values["checkpointing_steps"] != 0:
raise ValueError("validation_steps must be a multiple of checkpointing_steps")
return v
@field_validator("train_resolution")
def validate_train_resolution(cls, v: Tuple[int, int, int], info: ValidationInfo) -> str:
try:
frames, height, width = v
# Check if (frames - 1) is multiple of 8
if (frames - 1) % 8 != 0:
raise ValueError("Number of frames - 1 must be a multiple of 8")
# Check resolution for cogvideox-5b models
model_name = info.data.get("model_name", "")
if model_name in ["cogvideox-5b-i2v", "cogvideox-5b-t2v"]:
if (height, width) != (480, 720):
raise ValueError("For cogvideox-5b models, height must be 480 and width must be 720")
return v
except ValueError as e:
if (
str(e) == "not enough values to unpack (expected 3, got 0)"
or str(e) == "invalid literal for int() with base 10"
):
raise ValueError("train_resolution must be in format 'frames x height x width'")
raise e
@field_validator("mixed_precision")
def validate_mixed_precision(cls, v: str, info: ValidationInfo) -> str:
if v == "fp16" and "cogvideox-2b" not in str(info.data.get("model_path", "")).lower():
logging.warning(
"All CogVideoX models except cogvideox-2b were trained with bfloat16. "
"Using fp16 precision may lead to training instability."
)
return v
@classmethod
def parse_args(cls):
"""Parse command line arguments and return Args instance"""
parser = argparse.ArgumentParser()
# Required arguments
parser.add_argument("--model_path", type=str, required=True)
parser.add_argument("--model_name", type=str, required=True)
parser.add_argument("--model_type", type=str, required=True)
parser.add_argument("--depth_ckpt_path", type=str, required=False, default="./ckpt/others/depth_anything_v2_metric_hypersim_vitb.pth", help="Path to the checkpoint of the depth estimation networks")
parser.add_argument("--training_type", type=str, required=True)
parser.add_argument("--additional_save_blocks", type=str, required=False, default=None)
parser.add_argument("--output_dir", type=str, required=True)
parser.add_argument("--data_root", type=str, required=True)
parser.add_argument("--caption_column", type=str, required=True)
parser.add_argument("--video_column", type=str, required=True)
parser.add_argument("--train_resolution", type=str, required=True)
parser.add_argument("--report_to", type=str, required=True)
parser.add_argument("--run_name", type=str, required=False, default='CogVideoX')
# Training hyperparameters
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--train_epochs", type=int, default=10)
parser.add_argument("--train_steps", type=int, default=None)
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument("--learning_rate", type=float, default=2e-5)
parser.add_argument("--optimizer", type=str, default="adamw")
parser.add_argument("--beta1", type=float, default=0.9)
parser.add_argument("--beta2", type=float, default=0.95)
parser.add_argument("--beta3", type=float, default=0.98)
parser.add_argument("--epsilon", type=float, default=1e-8)
parser.add_argument("--weight_decay", type=float, default=1e-4)
parser.add_argument("--max_grad_norm", type=float, default=1.0)
# Learning rate scheduler
parser.add_argument("--lr_scheduler", type=str, default="constant_with_warmup")
parser.add_argument("--lr_warmup_steps", type=int, default=100)
parser.add_argument("--lr_num_cycles", type=int, default=1)
parser.add_argument("--lr_power", type=float, default=1.0)
# Data loading
parser.add_argument("--num_workers", type=int, default=8)
parser.add_argument("--pin_memory", type=bool, default=True)
parser.add_argument("--image_column", type=str, default=None)
# Model configuration
parser.add_argument("--mixed_precision", type=str, default="no")
parser.add_argument("--gradient_checkpointing", type=bool, default=True)
parser.add_argument("--enable_slicing", type=bool, default=True)
parser.add_argument("--enable_tiling", type=bool, default=True)
parser.add_argument("--nccl_timeout", type=int, default=1800)
# LoRA parameters
parser.add_argument("--rank", type=int, default=128)
parser.add_argument("--lora_alpha", type=int, default=64)
parser.add_argument("--target_modules", type=str, nargs="+", default=["to_q", "to_k", "to_v", "to_out.0"])
# Checkpointing
parser.add_argument("--checkpointing_steps", type=int, default=200)
parser.add_argument("--checkpointing_limit", type=int, default=10)
parser.add_argument("--resume_from_checkpoint", type=str, default=None)
# Validation
parser.add_argument("--do_validation", type=lambda x: x.lower() == 'true', default=False)
parser.add_argument("--validation_steps", type=int, default=None)
parser.add_argument("--validation_dir", type=str, default=None)
parser.add_argument("--validation_prompts", type=str, default=None)
parser.add_argument("--validation_images", type=str, default=None)
parser.add_argument("--validation_videos", type=str, default=None)
parser.add_argument("--gen_fps", type=int, default=15)
parser.add_argument("--max_scene", type=int, default=8)
# Controlnet
parser.add_argument("--controlnet_transformer_num_layers", type=int, default=8)
parser.add_argument("--controlnet_input_channels", type=int, default=16)
parser.add_argument("--controlnet_weights", type=float, default=1.0)
parser.add_argument("--controlnet_guidance_start", type=float, default=0.0)
parser.add_argument("--controlnet_guidance_end", type=float, default=1.0)
parser.add_argument("--controlnet_out_proj_dim_factor", type=int, default=64)
parser.add_argument("--controlnet_out_proj_zero_init", type=bool, default=True)
parser.add_argument("--enable_time_sampling", type=bool, default=True)
# parser.add_argument("--enable_time_sampling", type=lambda x: x.lower() == 'true', default=False)
parser.add_argument("--time_sampling_type", type=str, default='truncated_normal')
parser.add_argument("--time_sampling_mean", type=float, default=0.95)
parser.add_argument("--time_sampling_std", type=float, default=0.1)
parser.add_argument("--use_valid_mask", type=bool, default=False)
parser.add_argument("--notextinflow", type=bool, default=False)
args = parser.parse_args()
# Convert video_resolution_buckets string to list of tuples
frames, height, width = args.train_resolution.split("x")
args.train_resolution = (int(frames), int(height), int(width))
if args.additional_save_blocks is not None:
args.additional_save_blocks = args.additional_save_blocks.split(',')
if not args.training_type == 'lora':
# Use additional trainable blocks only for 'lora' setting
assert args.additional_save_blocks is None
return cls(**vars(args))