roll-ai's picture
Upload 185 files
4e7b4da verified
raw
history blame
7.43 kB
import logging
from pathlib import Path
from typing import List, Tuple
import cv2
import torch
from torchvision.transforms.functional import resize
from einops import repeat, rearrange
# Must import after torch because this can sometimes lead to a nasty segmentation fault, or stack smashing error
# Very few bug reports but it happens. Look in decord Github issues for more relevant information.
import decord # isort:skip
decord.bridge.set_bridge("torch")
from PIL import Image
import numpy as np
import pdb
########## loaders ##########
def load_prompts(prompt_path: Path) -> List[str]:
with open(prompt_path, "r", encoding="utf-8") as file:
return [line.strip() for line in file.readlines() if len(line.strip()) > 0]
def load_videos(video_path: Path) -> List[Path]:
with open(video_path, "r", encoding="utf-8") as file:
return [video_path.parent / line.strip() for line in file.readlines() if len(line.strip()) > 0]
def load_images(image_path: Path) -> List[Path]:
with open(image_path, "r", encoding="utf-8") as file:
return [image_path.parent / line.strip() for line in file.readlines() if len(line.strip()) > 0]
def load_images_from_videos(videos_path: List[Path]) -> List[Path]:
first_frames_dir = videos_path[0].parent.parent / "first_frames"
first_frames_dir.mkdir(exist_ok=True)
first_frame_paths = []
for video_path in videos_path:
frame_path = first_frames_dir / f"{video_path.stem}.png"
if frame_path.exists():
first_frame_paths.append(frame_path)
continue
# Open video
cap = cv2.VideoCapture(str(video_path))
# Read first frame
ret, frame = cap.read()
if not ret:
raise RuntimeError(f"Failed to read video: {video_path}")
# Save frame as PNG with same name as video
cv2.imwrite(str(frame_path), frame)
logging.info(f"Saved first frame to {frame_path}")
# Release video capture
cap.release()
first_frame_paths.append(frame_path)
return first_frame_paths
def load_binary_mask_compressed(path, shape, device, dtype):
# shape: (F,C,H,W), C=1
with open(path, 'rb') as f:
packed = np.frombuffer(f.read(), dtype=np.uint8)
unpacked = np.unpackbits(packed)[:np.prod(shape)]
mask_loaded = torch.from_numpy(unpacked).to(device, dtype).reshape(shape)
mask_interp = torch.nn.functional.interpolate(rearrange(mask_loaded, 'f c h w -> c f h w').unsqueeze(0), size=(shape[0]//4+1, shape[2]//8, shape[3]//8), mode='trilinear', align_corners=False).squeeze(0) # CFHW
mask_interp[mask_interp>=0.5] = 1.0
mask_interp[mask_interp<0.5] = 0.0
return rearrange(mask_loaded, 'f c h w -> c f h w'), mask_interp
########## preprocessors ##########
def preprocess_image_with_resize(
image_path: Path | str,
height: int,
width: int,
) -> torch.Tensor:
"""
Loads and resizes a single image.
Args:
image_path: Path to the image file.
height: Target height for resizing.
width: Target width for resizing.
Returns:
torch.Tensor: Image tensor with shape [C, H, W] where:
C = number of channels (3 for RGB)
H = height
W = width
"""
if isinstance(image_path, str):
image_path = Path(image_path)
# image = cv2.imread(image_path.as_posix())
# image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# image = cv2.resize(image, (width, height))
# image = torch.from_numpy(image).float()
# image = image.permute(2, 0, 1).contiguous()
image = np.array(Image.open(image_path.as_posix()).resize((width, height)))
image = torch.from_numpy(image).float()
image = image.permute(2, 0, 1).contiguous()
return image
def preprocess_video_with_resize(
video_path: Path | str,
max_num_frames: int,
height: int,
width: int,
) -> torch.Tensor:
"""
Loads and resizes a single video.
The function processes the video through these steps:
1. If video frame count > max_num_frames, downsample frames evenly
2. If video dimensions don't match (height, width), resize frames
Args:
video_path: Path to the video file.
max_num_frames: Maximum number of frames to keep.
height: Target height for resizing.
width: Target width for resizing.
Returns:
A torch.Tensor with shape [F, C, H, W] where:
F = number of frames
C = number of channels (3 for RGB)
H = height
W = width
"""
if isinstance(video_path, str):
video_path = Path(video_path)
video_reader = decord.VideoReader(uri=video_path.as_posix(), width=width, height=height)
video_num_frames = len(video_reader)
if video_num_frames < max_num_frames:
# Get all frames first
frames = video_reader.get_batch(list(range(video_num_frames)))
# Repeat the last frame until we reach max_num_frames
last_frame = frames[-1:]
num_repeats = max_num_frames - video_num_frames
repeated_frames = last_frame.repeat(num_repeats, 1, 1, 1)
frames = torch.cat([frames, repeated_frames], dim=0)
return frames.float().permute(0, 3, 1, 2).contiguous()
else:
indices = list(range(0, video_num_frames, video_num_frames // max_num_frames))
frames = video_reader.get_batch(indices)
import pdb
pdb.set_trace()
frames = frames[:max_num_frames].float()
frames = frames.permute(0, 3, 1, 2).contiguous()
return frames
def preprocess_video_with_buckets(
video_path: Path,
resolution_buckets: List[Tuple[int, int, int]],
) -> torch.Tensor:
"""
Args:
video_path: Path to the video file.
resolution_buckets: List of tuples (num_frames, height, width) representing
available resolution buckets.
Returns:
torch.Tensor: Video tensor with shape [F, C, H, W] where:
F = number of frames
C = number of channels (3 for RGB)
H = height
W = width
The function processes the video through these steps:
1. Finds nearest frame bucket <= video frame count
2. Downsamples frames evenly to match bucket size
3. Finds nearest resolution bucket based on dimensions
4. Resizes frames to match bucket resolution
"""
video_reader = decord.VideoReader(uri=video_path.as_posix())
video_num_frames = len(video_reader)
resolution_buckets = [bucket for bucket in resolution_buckets if bucket[0] <= video_num_frames]
if len(resolution_buckets) == 0:
raise ValueError(f"video frame count in {video_path} is less than all frame buckets {resolution_buckets}")
nearest_frame_bucket = min(
resolution_buckets,
key=lambda bucket: video_num_frames - bucket[0],
default=1,
)[0]
frame_indices = list(range(0, video_num_frames, video_num_frames // nearest_frame_bucket))
frames = video_reader.get_batch(frame_indices)
frames = frames[:nearest_frame_bucket].float()
frames = frames.permute(0, 3, 1, 2).contiguous()
nearest_res = min(resolution_buckets, key=lambda x: abs(x[1] - frames.shape[2]) + abs(x[2] - frames.shape[3]))
nearest_res = (nearest_res[1], nearest_res[2])
frames = torch.stack([resize(f, nearest_res) for f in frames], dim=0)
return frames