Update inference/flovd_demo.py
Browse files- inference/flovd_demo.py +77 -34
inference/flovd_demo.py
CHANGED
|
@@ -92,64 +92,107 @@ RESOLUTION_MAP = {
|
|
| 92 |
"cogvideox-2b": (480, 720),
|
| 93 |
}
|
| 94 |
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
def load_cogvideox_flovd_FVSM_controlnet_pipeline(controlnet_path, backbone_path, device, dtype):
|
| 98 |
-
controlnet_sd = torch.load(controlnet_path, map_location='cpu')['module']
|
| 99 |
-
|
| 100 |
tokenizer = AutoTokenizer.from_pretrained(backbone_path, subfolder="tokenizer")
|
| 101 |
-
text_encoder = T5EncoderModel.from_pretrained(backbone_path, subfolder="text_encoder"
|
| 102 |
-
transformer = CogVideoXTransformer3DModel.from_pretrained(
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
scheduler = CogVideoXDPMScheduler.from_pretrained(backbone_path, subfolder="scheduler")
|
| 105 |
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
controlnet.load_state_dict(controlnet_sd)
|
| 109 |
|
| 110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
tokenizer=tokenizer,
|
| 112 |
text_encoder=text_encoder,
|
| 113 |
vae=vae,
|
| 114 |
transformer=transformer,
|
| 115 |
-
controlnet=controlnet,
|
| 116 |
scheduler=scheduler,
|
| 117 |
-
)
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
return pipe
|
| 120 |
|
| 121 |
|
| 122 |
-
def
|
|
|
|
|
|
|
| 123 |
tokenizer = AutoTokenizer.from_pretrained(backbone_path, subfolder="tokenizer")
|
| 124 |
-
text_encoder = T5EncoderModel.from_pretrained(backbone_path, subfolder="text_encoder"
|
| 125 |
-
transformer =
|
| 126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
scheduler = CogVideoXDPMScheduler.from_pretrained(backbone_path, subfolder="scheduler")
|
| 128 |
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
if k.startswith("transformer.")
|
| 135 |
}
|
| 136 |
-
|
|
|
|
| 137 |
|
| 138 |
-
|
| 139 |
-
if os.path.exists(other_block_path):
|
| 140 |
-
tensor_dict = load_file(other_block_path)
|
| 141 |
-
for block_name, param in tensor_dict.items():
|
| 142 |
-
module_name, param_name = block_name.split(".", 1)
|
| 143 |
-
if hasattr(transformer, module_name):
|
| 144 |
-
getattr(transformer, module_name).load_state_dict({param_name: param}, strict=False)
|
| 145 |
|
| 146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
tokenizer=tokenizer,
|
| 148 |
text_encoder=text_encoder,
|
| 149 |
vae=vae,
|
| 150 |
transformer=transformer,
|
|
|
|
| 151 |
scheduler=scheduler,
|
| 152 |
-
)
|
|
|
|
|
|
|
|
|
|
| 153 |
|
| 154 |
return pipe
|
| 155 |
|
|
|
|
| 92 |
"cogvideox-2b": (480, 720),
|
| 93 |
}
|
| 94 |
|
| 95 |
+
def load_cogvideox_flovd_OMSM_lora_pipeline(omsm_path, backbone_path, transformer_lora_config, device, dtype):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
tokenizer = AutoTokenizer.from_pretrained(backbone_path, subfolder="tokenizer")
|
| 97 |
+
text_encoder = T5EncoderModel.from_pretrained(backbone_path, subfolder="text_encoder")
|
| 98 |
+
transformer = CogVideoXTransformer3DModel.from_pretrained(
|
| 99 |
+
backbone_path, subfolder="transformer", torch_dtype=dtype, device_map="auto"
|
| 100 |
+
)
|
| 101 |
+
vae = AutoencoderKLCogVideoX.from_pretrained(
|
| 102 |
+
backbone_path, subfolder="vae", torch_dtype=dtype, device_map="auto"
|
| 103 |
+
)
|
| 104 |
scheduler = CogVideoXDPMScheduler.from_pretrained(backbone_path, subfolder="scheduler")
|
| 105 |
|
| 106 |
+
# 1) Load Lora weight
|
| 107 |
+
transformer.add_adapter(transformer_lora_config)
|
|
|
|
| 108 |
|
| 109 |
+
lora_state_dict = FloVDOMSMCogVideoXImageToVideoPipeline.lora_state_dict(omsm_path)
|
| 110 |
+
transformer_state_dict = {
|
| 111 |
+
f'{k.replace("transformer.", "")}': v
|
| 112 |
+
for k, v in lora_state_dict.items()
|
| 113 |
+
if k.startswith("transformer.")
|
| 114 |
+
}
|
| 115 |
+
incompatible_keys = set_peft_model_state_dict(transformer, transformer_state_dict, adapter_name="default")
|
| 116 |
+
if incompatible_keys is not None:
|
| 117 |
+
# check only for unexpected keys
|
| 118 |
+
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
|
| 119 |
+
if unexpected_keys:
|
| 120 |
+
logger.warning(
|
| 121 |
+
f"Loading adapter weights from state_dict led to unexpected keys not found in the model: "
|
| 122 |
+
f" {unexpected_keys}. "
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
# 2) Load Other weight
|
| 126 |
+
load_path = os.path.join(omsm_path, "selected_blocks.safetensors")
|
| 127 |
+
if os.path.exists(load_path):
|
| 128 |
+
tensor_dict = load_file(load_path)
|
| 129 |
+
|
| 130 |
+
block_state_dicts = {}
|
| 131 |
+
for k, v in tensor_dict.items():
|
| 132 |
+
block_name, param_name = k.split(".", 1)
|
| 133 |
+
if block_name not in block_state_dicts:
|
| 134 |
+
block_state_dicts[block_name] = {}
|
| 135 |
+
block_state_dicts[block_name][param_name] = v
|
| 136 |
+
|
| 137 |
+
for block_name, state_dict in block_state_dicts.items():
|
| 138 |
+
if hasattr(transformer, block_name):
|
| 139 |
+
getattr(transformer, block_name).load_state_dict(state_dict)
|
| 140 |
+
else:
|
| 141 |
+
raise ValueError(f"Transformer has no attribute '{block_name}'")
|
| 142 |
+
|
| 143 |
+
pipe = FloVDOMSMCogVideoXImageToVideoPipeline(
|
| 144 |
tokenizer=tokenizer,
|
| 145 |
text_encoder=text_encoder,
|
| 146 |
vae=vae,
|
| 147 |
transformer=transformer,
|
|
|
|
| 148 |
scheduler=scheduler,
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
pipe.vae.enable_slicing()
|
| 152 |
+
pipe.vae.enable_tiling()
|
| 153 |
|
| 154 |
return pipe
|
| 155 |
|
| 156 |
|
| 157 |
+
def load_cogvideox_flovd_FVSM_controlnet_pipeline(controlnet_path, backbone_path, device, dtype):
|
| 158 |
+
controlnet_sd = torch.load(controlnet_path, map_location='cpu')['module']
|
| 159 |
+
|
| 160 |
tokenizer = AutoTokenizer.from_pretrained(backbone_path, subfolder="tokenizer")
|
| 161 |
+
text_encoder = T5EncoderModel.from_pretrained(backbone_path, subfolder="text_encoder")
|
| 162 |
+
transformer = CustomCogVideoXTransformer3DModel.from_pretrained(
|
| 163 |
+
backbone_path, subfolder="transformer", torch_dtype=dtype, device_map="auto"
|
| 164 |
+
)
|
| 165 |
+
vae = AutoencoderKLCogVideoX.from_pretrained(
|
| 166 |
+
backbone_path, subfolder="vae", torch_dtype=dtype, device_map="auto"
|
| 167 |
+
)
|
| 168 |
scheduler = CogVideoXDPMScheduler.from_pretrained(backbone_path, subfolder="scheduler")
|
| 169 |
|
| 170 |
+
additional_kwargs = {
|
| 171 |
+
'num_layers': 6,
|
| 172 |
+
'out_proj_dim_factor': 64,
|
| 173 |
+
'out_proj_dim_zero_init': True,
|
| 174 |
+
'notextinflow': True,
|
|
|
|
| 175 |
}
|
| 176 |
+
controlnet = CogVideoXControlnet.from_pretrained(backbone_path, subfolder="transformer", **additional_kwargs)
|
| 177 |
+
controlnet.eval()
|
| 178 |
|
| 179 |
+
missing, unexpected = controlnet.load_state_dict(controlnet_sd)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
|
| 181 |
+
if len(missing) != 0 or len(unexpected) != 0:
|
| 182 |
+
print(f"Missing keys : {missing}")
|
| 183 |
+
print(f"Unexpected keys : {unexpected}")
|
| 184 |
+
|
| 185 |
+
pipe = FloVDCogVideoXControlnetImageToVideoPipeline(
|
| 186 |
tokenizer=tokenizer,
|
| 187 |
text_encoder=text_encoder,
|
| 188 |
vae=vae,
|
| 189 |
transformer=transformer,
|
| 190 |
+
controlnet=controlnet,
|
| 191 |
scheduler=scheduler,
|
| 192 |
+
)
|
| 193 |
+
|
| 194 |
+
pipe.vae.enable_slicing()
|
| 195 |
+
pipe.vae.enable_tiling()
|
| 196 |
|
| 197 |
return pipe
|
| 198 |
|