Update app.py
Browse files
app.py
CHANGED
|
@@ -4,6 +4,9 @@ import torch
|
|
| 4 |
import subprocess
|
| 5 |
from PIL import Image
|
| 6 |
from pathlib import Path
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
# =========================================
|
| 9 |
# 1. Define Hugging Face weights and paths
|
|
@@ -30,16 +33,22 @@ def download_weights():
|
|
| 30 |
print(f"β
Already exists: {save_path}")
|
| 31 |
|
| 32 |
download_weights()
|
| 33 |
-
|
| 34 |
-
import torch
|
| 35 |
-
import os
|
| 36 |
from inference.flovd_demo import generate_video
|
| 37 |
|
| 38 |
def run_inference(prompt, image, pose_type, speed, use_flow_integration, cam_pose_name):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
try:
|
|
|
|
| 40 |
os.makedirs("input_images", exist_ok=True)
|
| 41 |
image_path = "input_images/input_image.png"
|
| 42 |
image.save(image_path)
|
|
|
|
| 43 |
|
| 44 |
generate_video(
|
| 45 |
prompt=prompt,
|
|
@@ -62,13 +71,25 @@ def run_inference(prompt, image, pose_type, speed, use_flow_integration, cam_pos
|
|
| 62 |
cam_pose_name=cam_pose_name,
|
| 63 |
depth_ckpt_path="./ckpt/others/depth_anything_v2_metric_hypersim_vitb.pth"
|
| 64 |
)
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
except Exception as e:
|
| 68 |
-
print("π₯ Inference failed:")
|
| 69 |
-
import traceback
|
| 70 |
traceback.print_exc()
|
| 71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
with gr.Blocks() as demo:
|
| 74 |
gr.Markdown("## π₯ FloVD: Optical Flow + CogVideoX Video Generation")
|
|
@@ -83,7 +104,12 @@ with gr.Blocks() as demo:
|
|
| 83 |
submit = gr.Button("Generate Video")
|
| 84 |
with gr.Column():
|
| 85 |
output_video = gr.Video(label="Generated Video")
|
|
|
|
| 86 |
|
| 87 |
-
submit.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
demo.launch()
|
|
|
|
| 4 |
import subprocess
|
| 5 |
from PIL import Image
|
| 6 |
from pathlib import Path
|
| 7 |
+
import io
|
| 8 |
+
import sys
|
| 9 |
+
import traceback
|
| 10 |
|
| 11 |
# =========================================
|
| 12 |
# 1. Define Hugging Face weights and paths
|
|
|
|
| 33 |
print(f"β
Already exists: {save_path}")
|
| 34 |
|
| 35 |
download_weights()
|
| 36 |
+
|
|
|
|
|
|
|
| 37 |
from inference.flovd_demo import generate_video
|
| 38 |
|
| 39 |
def run_inference(prompt, image, pose_type, speed, use_flow_integration, cam_pose_name):
|
| 40 |
+
# Redirect stdout to capture logs
|
| 41 |
+
log_buffer = io.StringIO()
|
| 42 |
+
sys_stdout = sys.stdout
|
| 43 |
+
sys.stdout = log_buffer
|
| 44 |
+
|
| 45 |
+
video_path = None
|
| 46 |
try:
|
| 47 |
+
print("π Starting inference...")
|
| 48 |
os.makedirs("input_images", exist_ok=True)
|
| 49 |
image_path = "input_images/input_image.png"
|
| 50 |
image.save(image_path)
|
| 51 |
+
print(f"πΈ Saved input image to {image_path}")
|
| 52 |
|
| 53 |
generate_video(
|
| 54 |
prompt=prompt,
|
|
|
|
| 71 |
cam_pose_name=cam_pose_name,
|
| 72 |
depth_ckpt_path="./ckpt/others/depth_anything_v2_metric_hypersim_vitb.pth"
|
| 73 |
)
|
| 74 |
+
|
| 75 |
+
video_name = f"{prompt[:30].strip().replace(' ', '_')}_{cam_pose_name or 'default'}.mp4"
|
| 76 |
+
video_path = f"./outputs/generated_videos/{video_name}"
|
| 77 |
+
print(f"β
Inference complete. Video saved to {video_path}")
|
| 78 |
|
| 79 |
except Exception as e:
|
| 80 |
+
print("π₯ Inference failed with exception:")
|
|
|
|
| 81 |
traceback.print_exc()
|
| 82 |
+
|
| 83 |
+
# Restore stdout and return logs
|
| 84 |
+
sys.stdout = sys_stdout
|
| 85 |
+
logs = log_buffer.getvalue()
|
| 86 |
+
log_buffer.close()
|
| 87 |
+
|
| 88 |
+
return (video_path if video_path and os.path.exists(video_path) else None), logs
|
| 89 |
+
|
| 90 |
+
# ========================
|
| 91 |
+
# Gradio Interface
|
| 92 |
+
# ========================
|
| 93 |
|
| 94 |
with gr.Blocks() as demo:
|
| 95 |
gr.Markdown("## π₯ FloVD: Optical Flow + CogVideoX Video Generation")
|
|
|
|
| 104 |
submit = gr.Button("Generate Video")
|
| 105 |
with gr.Column():
|
| 106 |
output_video = gr.Video(label="Generated Video")
|
| 107 |
+
output_logs = gr.Textbox(label="Logs", lines=20, interactive=False)
|
| 108 |
|
| 109 |
+
submit.click(
|
| 110 |
+
fn=run_inference,
|
| 111 |
+
inputs=[prompt, image, pose_type, speed, use_flow_integration, cam_pose_name],
|
| 112 |
+
outputs=[output_video, output_logs]
|
| 113 |
+
)
|
| 114 |
|
| 115 |
demo.launch()
|