Spaces:
Paused
Paused
File size: 12,790 Bytes
59d751c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
import hashlib
from pathlib import Path
from typing import TYPE_CHECKING, Any, Dict, List, Tuple
import torch
from accelerate.logging import get_logger
from safetensors.torch import load_file, save_file
from torch.utils.data import Dataset
from torchvision import transforms
from typing_extensions import override
from finetune.constants import LOG_LEVEL, LOG_NAME
from .utils import (
load_images,
load_images_from_videos,
load_prompts,
load_videos,
preprocess_image_with_resize,
preprocess_video_with_buckets,
preprocess_video_with_resize,
)
if TYPE_CHECKING:
from finetune.trainer import Trainer
# Must import after torch because this can sometimes lead to a nasty segmentation fault, or stack smashing error
# Very few bug reports but it happens. Look in decord Github issues for more relevant information.
import decord # isort:skip
decord.bridge.set_bridge("torch")
logger = get_logger(LOG_NAME, LOG_LEVEL)
class BaseI2VDataset(Dataset):
"""
Base dataset class for Image-to-Video (I2V) training.
This dataset loads prompts, videos and corresponding conditioning images for I2V training.
Args:
data_root (str): Root directory containing the dataset files
caption_column (str): Path to file containing text prompts/captions
video_column (str): Path to file containing video paths
image_column (str): Path to file containing image paths
device (torch.device): Device to load the data on
encode_video_fn (Callable[[torch.Tensor], torch.Tensor], optional): Function to encode videos
"""
def __init__(
self,
data_root: str,
caption_column: str,
video_column: str,
image_column: str | None,
device: torch.device,
trainer: "Trainer" = None,
*args,
**kwargs,
) -> None:
super().__init__()
data_root = Path(data_root)
self.prompts = load_prompts(data_root / caption_column)
self.videos = load_videos(data_root / video_column)
if image_column is not None:
self.images = load_images(data_root / image_column)
else:
self.images = load_images_from_videos(self.videos)
self.trainer = trainer
self.device = device
self.encode_video = trainer.encode_video
self.encode_text = trainer.encode_text
# Check if number of prompts matches number of videos and images
if not (len(self.videos) == len(self.prompts) == len(self.images)):
raise ValueError(
f"Expected length of prompts, videos and images to be the same but found {len(self.prompts)=}, {len(self.videos)=} and {len(self.images)=}. Please ensure that the number of caption prompts, videos and images match in your dataset."
)
# Check if all video files exist
if any(not path.is_file() for path in self.videos):
raise ValueError(
f"Some video files were not found. Please ensure that all video files exist in the dataset directory. Missing file: {next(path for path in self.videos if not path.is_file())}"
)
# Check if all image files exist
if any(not path.is_file() for path in self.images):
raise ValueError(
f"Some image files were not found. Please ensure that all image files exist in the dataset directory. Missing file: {next(path for path in self.images if not path.is_file())}"
)
def __len__(self) -> int:
return len(self.videos)
def __getitem__(self, index: int) -> Dict[str, Any]:
if isinstance(index, list):
# Here, index is actually a list of data objects that we need to return.
# The BucketSampler should ideally return indices. But, in the sampler, we'd like
# to have information about num_frames, height and width. Since this is not stored
# as metadata, we need to read the video to get this information. You could read this
# information without loading the full video in memory, but we do it anyway. In order
# to not load the video twice (once to get the metadata, and once to return the loaded video
# based on sampled indices), we cache it in the BucketSampler. When the sampler is
# to yield, we yield the cache data instead of indices. So, this special check ensures
# that data is not loaded a second time. PRs are welcome for improvements.
return index
prompt = self.prompts[index]
video = self.videos[index]
image = self.images[index]
train_resolution_str = "x".join(str(x) for x in self.trainer.args.train_resolution)
cache_dir = self.trainer.args.data_root / "cache"
video_latent_dir = cache_dir / "video_latent" / self.trainer.args.model_name / train_resolution_str
prompt_embeddings_dir = cache_dir / "prompt_embeddings"
video_latent_dir.mkdir(parents=True, exist_ok=True)
prompt_embeddings_dir.mkdir(parents=True, exist_ok=True)
prompt_hash = str(hashlib.sha256(prompt.encode()).hexdigest())
prompt_embedding_path = prompt_embeddings_dir / (prompt_hash + ".safetensors")
encoded_video_path = video_latent_dir / (video.stem + ".safetensors")
if prompt_embedding_path.exists():
prompt_embedding = load_file(prompt_embedding_path)["prompt_embedding"]
logger.debug(
f"process {self.trainer.accelerator.process_index}: Loaded prompt embedding from {prompt_embedding_path}",
main_process_only=False,
)
else:
prompt_embedding = self.encode_text(prompt)
prompt_embedding = prompt_embedding.to("cpu")
# [1, seq_len, hidden_size] -> [seq_len, hidden_size]
prompt_embedding = prompt_embedding[0]
save_file({"prompt_embedding": prompt_embedding}, prompt_embedding_path)
logger.info(f"Saved prompt embedding to {prompt_embedding_path}", main_process_only=False)
if encoded_video_path.exists():
encoded_video = load_file(encoded_video_path)["encoded_video"]
logger.debug(f"Loaded encoded video from {encoded_video_path}", main_process_only=False)
# shape of image: [C, H, W]
_, image = self.preprocess(None, self.images[index])
image = self.image_transform(image)
else:
frames, image = self.preprocess(video, image)
frames = frames.to(self.device)
image = image.to(self.device)
image = self.image_transform(image)
# Current shape of frames: [F, C, H, W]
frames = self.video_transform(frames)
# Convert to [B, C, F, H, W]
frames = frames.unsqueeze(0)
frames = frames.permute(0, 2, 1, 3, 4).contiguous()
encoded_video = self.encode_video(frames)
# [1, C, F, H, W] -> [C, F, H, W]
encoded_video = encoded_video[0]
encoded_video = encoded_video.to("cpu")
image = image.to("cpu")
save_file({"encoded_video": encoded_video}, encoded_video_path)
logger.info(f"Saved encoded video to {encoded_video_path}", main_process_only=False)
# shape of encoded_video: [C, F, H, W]
# shape of image: [C, H, W]
return {
"image": image,
"prompt_embedding": prompt_embedding,
"encoded_video": encoded_video,
"video_metadata": {
"num_frames": encoded_video.shape[1],
"height": encoded_video.shape[2],
"width": encoded_video.shape[3],
},
}
def preprocess(self, video_path: Path | None, image_path: Path | None) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Loads and preprocesses a video and an image.
If either path is None, no preprocessing will be done for that input.
Args:
video_path: Path to the video file to load
image_path: Path to the image file to load
Returns:
A tuple containing:
- video(torch.Tensor) of shape [F, C, H, W] where F is number of frames,
C is number of channels, H is height and W is width
- image(torch.Tensor) of shape [C, H, W]
"""
raise NotImplementedError("Subclass must implement this method")
def video_transform(self, frames: torch.Tensor) -> torch.Tensor:
"""
Applies transformations to a video.
Args:
frames (torch.Tensor): A 4D tensor representing a video
with shape [F, C, H, W] where:
- F is number of frames
- C is number of channels (3 for RGB)
- H is height
- W is width
Returns:
torch.Tensor: The transformed video tensor
"""
raise NotImplementedError("Subclass must implement this method")
def image_transform(self, image: torch.Tensor) -> torch.Tensor:
"""
Applies transformations to an image.
Args:
image (torch.Tensor): A 3D tensor representing an image
with shape [C, H, W] where:
- C is number of channels (3 for RGB)
- H is height
- W is width
Returns:
torch.Tensor: The transformed image tensor
"""
raise NotImplementedError("Subclass must implement this method")
class I2VDatasetWithResize(BaseI2VDataset):
"""
A dataset class for image-to-video generation that resizes inputs to fixed dimensions.
This class preprocesses videos and images by resizing them to specified dimensions:
- Videos are resized to max_num_frames x height x width
- Images are resized to height x width
Args:
max_num_frames (int): Maximum number of frames to extract from videos
height (int): Target height for resizing videos and images
width (int): Target width for resizing videos and images
"""
def __init__(self, max_num_frames: int, height: int, width: int, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
self.max_num_frames = max_num_frames
self.height = height
self.width = width
self.__frame_transforms = transforms.Compose([transforms.Lambda(lambda x: x / 255.0 * 2.0 - 1.0)])
self.__image_transforms = self.__frame_transforms
@override
def preprocess(self, video_path: Path | None, image_path: Path | None) -> Tuple[torch.Tensor, torch.Tensor]:
if video_path is not None:
video = preprocess_video_with_resize(video_path, self.max_num_frames, self.height, self.width)
else:
video = None
if image_path is not None:
image = preprocess_image_with_resize(image_path, self.height, self.width)
else:
image = None
return video, image
@override
def video_transform(self, frames: torch.Tensor) -> torch.Tensor:
return torch.stack([self.__frame_transforms(f) for f in frames], dim=0)
@override
def image_transform(self, image: torch.Tensor) -> torch.Tensor:
return self.__image_transforms(image)
class I2VDatasetWithBuckets(BaseI2VDataset):
def __init__(
self,
video_resolution_buckets: List[Tuple[int, int, int]],
vae_temporal_compression_ratio: int,
vae_height_compression_ratio: int,
vae_width_compression_ratio: int,
*args,
**kwargs,
) -> None:
super().__init__(*args, **kwargs)
self.video_resolution_buckets = [
(
int(b[0] / vae_temporal_compression_ratio),
int(b[1] / vae_height_compression_ratio),
int(b[2] / vae_width_compression_ratio),
)
for b in video_resolution_buckets
]
self.__frame_transforms = transforms.Compose([transforms.Lambda(lambda x: x / 255.0 * 2.0 - 1.0)])
self.__image_transforms = self.__frame_transforms
@override
def preprocess(self, video_path: Path, image_path: Path) -> Tuple[torch.Tensor, torch.Tensor]:
video = preprocess_video_with_buckets(video_path, self.video_resolution_buckets)
image = preprocess_image_with_resize(image_path, video.shape[2], video.shape[3])
return video, image
@override
def video_transform(self, frames: torch.Tensor) -> torch.Tensor:
return torch.stack([self.__frame_transforms(f) for f in frames], dim=0)
@override
def image_transform(self, image: torch.Tensor) -> torch.Tensor:
return self.__image_transforms(image)
|