File size: 10,126 Bytes
59d751c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import hashlib
from pathlib import Path
from typing import TYPE_CHECKING, Any, Dict, List, Tuple

import torch
from accelerate.logging import get_logger
from safetensors.torch import load_file, save_file
from torch.utils.data import Dataset
from torchvision import transforms
from typing_extensions import override

from finetune.constants import LOG_LEVEL, LOG_NAME

from .utils import load_prompts, load_videos, preprocess_video_with_buckets, preprocess_video_with_resize


if TYPE_CHECKING:
    from finetune.trainer import Trainer

# Must import after torch because this can sometimes lead to a nasty segmentation fault, or stack smashing error
# Very few bug reports but it happens. Look in decord Github issues for more relevant information.
import decord  # isort:skip

decord.bridge.set_bridge("torch")

logger = get_logger(LOG_NAME, LOG_LEVEL)


class BaseT2VDataset(Dataset):
    """
    Base dataset class for Text-to-Video (T2V) training.

    This dataset loads prompts and videos for T2V training.

    Args:
        data_root (str): Root directory containing the dataset files
        caption_column (str): Path to file containing text prompts/captions
        video_column (str): Path to file containing video paths
        device (torch.device): Device to load the data on
        encode_video_fn (Callable[[torch.Tensor], torch.Tensor], optional): Function to encode videos
    """

    def __init__(
        self,
        data_root: str,
        caption_column: str,
        video_column: str,
        device: torch.device = None,
        trainer: "Trainer" = None,
        *args,
        **kwargs,
    ) -> None:
        super().__init__()

        data_root = Path(data_root)
        self.prompts = load_prompts(data_root / caption_column)
        self.videos = load_videos(data_root / video_column)
        self.device = device
        self.encode_video = trainer.encode_video
        self.encode_text = trainer.encode_text
        self.trainer = trainer

        # Check if all video files exist
        if any(not path.is_file() for path in self.videos):
            raise ValueError(
                f"Some video files were not found. Please ensure that all video files exist in the dataset directory. Missing file: {next(path for path in self.videos if not path.is_file())}"
            )

        # Check if number of prompts matches number of videos
        if len(self.videos) != len(self.prompts):
            raise ValueError(
                f"Expected length of prompts and videos to be the same but found {len(self.prompts)=} and {len(self.videos)=}. Please ensure that the number of caption prompts and videos match in your dataset."
            )

    def __len__(self) -> int:
        return len(self.videos)

    def __getitem__(self, index: int) -> Dict[str, Any]:
        if isinstance(index, list):
            # Here, index is actually a list of data objects that we need to return.
            # The BucketSampler should ideally return indices. But, in the sampler, we'd like
            # to have information about num_frames, height and width. Since this is not stored
            # as metadata, we need to read the video to get this information. You could read this
            # information without loading the full video in memory, but we do it anyway. In order
            # to not load the video twice (once to get the metadata, and once to return the loaded video
            # based on sampled indices), we cache it in the BucketSampler. When the sampler is
            # to yield, we yield the cache data instead of indices. So, this special check ensures
            # that data is not loaded a second time. PRs are welcome for improvements.
            return index

        prompt = self.prompts[index]
        video = self.videos[index]
        train_resolution_str = "x".join(str(x) for x in self.trainer.args.train_resolution)

        cache_dir = self.trainer.args.data_root / "cache"
        video_latent_dir = cache_dir / "video_latent" / self.trainer.args.model_name / train_resolution_str
        prompt_embeddings_dir = cache_dir / "prompt_embeddings"
        video_latent_dir.mkdir(parents=True, exist_ok=True)
        prompt_embeddings_dir.mkdir(parents=True, exist_ok=True)

        prompt_hash = str(hashlib.sha256(prompt.encode()).hexdigest())
        prompt_embedding_path = prompt_embeddings_dir / (prompt_hash + ".safetensors")
        encoded_video_path = video_latent_dir / (video.stem + ".safetensors")

        if prompt_embedding_path.exists():
            prompt_embedding = load_file(prompt_embedding_path)["prompt_embedding"]
            logger.debug(
                f"process {self.trainer.accelerator.process_index}: Loaded prompt embedding from {prompt_embedding_path}",
                main_process_only=False,
            )
        else:
            prompt_embedding = self.encode_text(prompt)
            prompt_embedding = prompt_embedding.to("cpu")
            # [1, seq_len, hidden_size] -> [seq_len, hidden_size]
            prompt_embedding = prompt_embedding[0]
            save_file({"prompt_embedding": prompt_embedding}, prompt_embedding_path)
            logger.info(f"Saved prompt embedding to {prompt_embedding_path}", main_process_only=False)

        if encoded_video_path.exists():
            # encoded_video = torch.load(encoded_video_path, weights_only=True)
            encoded_video = load_file(encoded_video_path)["encoded_video"]
            logger.debug(f"Loaded encoded video from {encoded_video_path}", main_process_only=False)
            # shape of image: [C, H, W]
        else:
            frames = self.preprocess(video)
            frames = frames.to(self.device)
            # Current shape of frames: [F, C, H, W]
            frames = self.video_transform(frames)
            # Convert to [B, C, F, H, W]
            frames = frames.unsqueeze(0)
            frames = frames.permute(0, 2, 1, 3, 4).contiguous()
            encoded_video = self.encode_video(frames)

            # [1, C, F, H, W] -> [C, F, H, W]
            encoded_video = encoded_video[0]
            encoded_video = encoded_video.to("cpu")
            save_file({"encoded_video": encoded_video}, encoded_video_path)
            logger.info(f"Saved encoded video to {encoded_video_path}", main_process_only=False)

        # shape of encoded_video: [C, F, H, W]
        return {
            "prompt_embedding": prompt_embedding,
            "encoded_video": encoded_video,
            "video_metadata": {
                "num_frames": encoded_video.shape[1],
                "height": encoded_video.shape[2],
                "width": encoded_video.shape[3],
            },
        }

    def preprocess(self, video_path: Path) -> torch.Tensor:
        """
        Loads and preprocesses a video.

        Args:
            video_path: Path to the video file to load.

        Returns:
            torch.Tensor: Video tensor of shape [F, C, H, W] where:
                - F is number of frames
                - C is number of channels (3 for RGB)
                - H is height
                - W is width
        """
        raise NotImplementedError("Subclass must implement this method")

    def video_transform(self, frames: torch.Tensor) -> torch.Tensor:
        """
        Applies transformations to a video.

        Args:
            frames (torch.Tensor): A 4D tensor representing a video
                with shape [F, C, H, W] where:
                - F is number of frames
                - C is number of channels (3 for RGB)
                - H is height
                - W is width

        Returns:
            torch.Tensor: The transformed video tensor with the same shape as the input
        """
        raise NotImplementedError("Subclass must implement this method")


class T2VDatasetWithResize(BaseT2VDataset):
    """
    A dataset class for text-to-video generation that resizes inputs to fixed dimensions.

    This class preprocesses videos by resizing them to specified dimensions:
    - Videos are resized to max_num_frames x height x width

    Args:
        max_num_frames (int): Maximum number of frames to extract from videos
        height (int): Target height for resizing videos
        width (int): Target width for resizing videos
    """

    def __init__(self, max_num_frames: int, height: int, width: int, *args, **kwargs) -> None:
        super().__init__(*args, **kwargs)

        self.max_num_frames = max_num_frames
        self.height = height
        self.width = width

        self.__frame_transform = transforms.Compose([transforms.Lambda(lambda x: x / 255.0 * 2.0 - 1.0)])

    @override
    def preprocess(self, video_path: Path) -> torch.Tensor:
        return preprocess_video_with_resize(
            video_path,
            self.max_num_frames,
            self.height,
            self.width,
        )

    @override
    def video_transform(self, frames: torch.Tensor) -> torch.Tensor:
        return torch.stack([self.__frame_transform(f) for f in frames], dim=0)


class T2VDatasetWithBuckets(BaseT2VDataset):
    def __init__(
        self,
        video_resolution_buckets: List[Tuple[int, int, int]],
        vae_temporal_compression_ratio: int,
        vae_height_compression_ratio: int,
        vae_width_compression_ratio: int,
        *args,
        **kwargs,
    ) -> None:
        """ """
        super().__init__(*args, **kwargs)

        self.video_resolution_buckets = [
            (
                int(b[0] / vae_temporal_compression_ratio),
                int(b[1] / vae_height_compression_ratio),
                int(b[2] / vae_width_compression_ratio),
            )
            for b in video_resolution_buckets
        ]

        self.__frame_transform = transforms.Compose([transforms.Lambda(lambda x: x / 255.0 * 2.0 - 1.0)])

    @override
    def preprocess(self, video_path: Path) -> torch.Tensor:
        return preprocess_video_with_buckets(video_path, self.video_resolution_buckets)

    @override
    def video_transform(self, frames: torch.Tensor) -> torch.Tensor:
        return torch.stack([self.__frame_transform(f) for f in frames], dim=0)