File size: 7,427 Bytes
59d751c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import logging
from pathlib import Path
from typing import List, Tuple

import cv2
import torch
from torchvision.transforms.functional import resize
from einops import repeat, rearrange

# Must import after torch because this can sometimes lead to a nasty segmentation fault, or stack smashing error
# Very few bug reports but it happens. Look in decord Github issues for more relevant information.
import decord  # isort:skip

decord.bridge.set_bridge("torch")

from PIL import Image
import numpy as np
import pdb

##########  loaders  ##########


def load_prompts(prompt_path: Path) -> List[str]:
    with open(prompt_path, "r", encoding="utf-8") as file:
        return [line.strip() for line in file.readlines() if len(line.strip()) > 0]


def load_videos(video_path: Path) -> List[Path]:
    with open(video_path, "r", encoding="utf-8") as file:
        return [video_path.parent / line.strip() for line in file.readlines() if len(line.strip()) > 0]


def load_images(image_path: Path) -> List[Path]:
    with open(image_path, "r", encoding="utf-8") as file:
        return [image_path.parent / line.strip() for line in file.readlines() if len(line.strip()) > 0]


def load_images_from_videos(videos_path: List[Path]) -> List[Path]:
    first_frames_dir = videos_path[0].parent.parent / "first_frames"
    first_frames_dir.mkdir(exist_ok=True)

    first_frame_paths = []
    for video_path in videos_path:
        frame_path = first_frames_dir / f"{video_path.stem}.png"
        if frame_path.exists():
            first_frame_paths.append(frame_path)
            continue

        # Open video
        cap = cv2.VideoCapture(str(video_path))

        # Read first frame
        ret, frame = cap.read()
        if not ret:
            raise RuntimeError(f"Failed to read video: {video_path}")

        # Save frame as PNG with same name as video
        cv2.imwrite(str(frame_path), frame)
        logging.info(f"Saved first frame to {frame_path}")

        # Release video capture
        cap.release()

        first_frame_paths.append(frame_path)

    return first_frame_paths


def load_binary_mask_compressed(path, shape, device, dtype):
    # shape: (F,C,H,W), C=1
    with open(path, 'rb') as f:
        packed = np.frombuffer(f.read(), dtype=np.uint8)
    unpacked = np.unpackbits(packed)[:np.prod(shape)]
    mask_loaded = torch.from_numpy(unpacked).to(device, dtype).reshape(shape)

    mask_interp = torch.nn.functional.interpolate(rearrange(mask_loaded, 'f c h w -> c f h w').unsqueeze(0), size=(shape[0]//4+1, shape[2]//8, shape[3]//8), mode='trilinear', align_corners=False).squeeze(0) # CFHW
    mask_interp[mask_interp>=0.5] = 1.0
    mask_interp[mask_interp<0.5] = 0.0
    
    return rearrange(mask_loaded, 'f c h w -> c f h w'), mask_interp

##########  preprocessors  ##########


def preprocess_image_with_resize(
    image_path: Path | str,
    height: int,
    width: int,
) -> torch.Tensor:
    """
    Loads and resizes a single image.

    Args:
        image_path: Path to the image file.
        height: Target height for resizing.
        width: Target width for resizing.

    Returns:
        torch.Tensor: Image tensor with shape [C, H, W] where:
            C = number of channels (3 for RGB)
            H = height
            W = width
    """
    if isinstance(image_path, str):
        image_path = Path(image_path)
    # image = cv2.imread(image_path.as_posix())
    # image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    # image = cv2.resize(image, (width, height))
    # image = torch.from_numpy(image).float()
    # image = image.permute(2, 0, 1).contiguous()

    image = np.array(Image.open(image_path.as_posix()).resize((width, height)))
    image = torch.from_numpy(image).float()
    image = image.permute(2, 0, 1).contiguous()

    return image


def preprocess_video_with_resize(
    video_path: Path | str,
    max_num_frames: int,
    height: int,
    width: int,
) -> torch.Tensor:
    """
    Loads and resizes a single video.

    The function processes the video through these steps:
      1. If video frame count > max_num_frames, downsample frames evenly
      2. If video dimensions don't match (height, width), resize frames

    Args:
        video_path: Path to the video file.
        max_num_frames: Maximum number of frames to keep.
        height: Target height for resizing.
        width: Target width for resizing.

    Returns:
        A torch.Tensor with shape [F, C, H, W] where:
          F = number of frames
          C = number of channels (3 for RGB)
          H = height
          W = width
    """
    if isinstance(video_path, str):
        video_path = Path(video_path)
    video_reader = decord.VideoReader(uri=video_path.as_posix(), width=width, height=height)
    video_num_frames = len(video_reader)
    if video_num_frames < max_num_frames:
        # Get all frames first
        frames = video_reader.get_batch(list(range(video_num_frames)))
        # Repeat the last frame until we reach max_num_frames
        last_frame = frames[-1:]
        num_repeats = max_num_frames - video_num_frames
        repeated_frames = last_frame.repeat(num_repeats, 1, 1, 1)
        frames = torch.cat([frames, repeated_frames], dim=0)
        return frames.float().permute(0, 3, 1, 2).contiguous()
    else:
        indices = list(range(0, video_num_frames, video_num_frames // max_num_frames))
        frames = video_reader.get_batch(indices)
        import pdb
        pdb.set_trace()
        frames = frames[:max_num_frames].float()
        frames = frames.permute(0, 3, 1, 2).contiguous()
        return frames


def preprocess_video_with_buckets(
    video_path: Path,
    resolution_buckets: List[Tuple[int, int, int]],
) -> torch.Tensor:
    """
    Args:
        video_path: Path to the video file.
        resolution_buckets: List of tuples (num_frames, height, width) representing
            available resolution buckets.

    Returns:
        torch.Tensor: Video tensor with shape [F, C, H, W] where:
            F = number of frames
            C = number of channels (3 for RGB)
            H = height
            W = width

    The function processes the video through these steps:
        1. Finds nearest frame bucket <= video frame count
        2. Downsamples frames evenly to match bucket size
        3. Finds nearest resolution bucket based on dimensions
        4. Resizes frames to match bucket resolution
    """
    video_reader = decord.VideoReader(uri=video_path.as_posix())
    video_num_frames = len(video_reader)
    resolution_buckets = [bucket for bucket in resolution_buckets if bucket[0] <= video_num_frames]
    if len(resolution_buckets) == 0:
        raise ValueError(f"video frame count in {video_path} is less than all frame buckets {resolution_buckets}")

    nearest_frame_bucket = min(
        resolution_buckets,
        key=lambda bucket: video_num_frames - bucket[0],
        default=1,
    )[0]
    frame_indices = list(range(0, video_num_frames, video_num_frames // nearest_frame_bucket))
    frames = video_reader.get_batch(frame_indices)
    frames = frames[:nearest_frame_bucket].float()
    frames = frames.permute(0, 3, 1, 2).contiguous()

    nearest_res = min(resolution_buckets, key=lambda x: abs(x[1] - frames.shape[2]) + abs(x[2] - frames.shape[3]))
    nearest_res = (nearest_res[1], nearest_res[2])
    frames = torch.stack([resize(f, nearest_res) for f in frames], dim=0)

    return frames